ICAR Krishi Vigyan Kendra Erode - Tamil Nadu

Submitted to ICAR - ATARI, Zone - X, Hyderabad

ANNUAL REPORT 1st January 2021 to 31st December 2021

<u>1. GENERAL INFORMATION ABOUT THE KVK</u>

1.1. Name and address of KVK with phone, fax and e-mail

Name of the KVK	:	ICAR KVK MYRADA, ERODE DISTRICT	
Address	:	ICAR – Krishi Vigyan Kendra	
		272, Perumal Nagar	
		Puduvalliampalayam Road	
		Kalingiyam Post	
		Gobichettipalayam Taluk	
		Erode District – 638453	
		Tamilnadu	
Phone No.	:	04285 - 241626	
Email ID	:	myradakvk@gmail.com; KVK.Erode@icar.gov.in	

1.2 .Name and address of host organization with phone, fax and e-mail

Name of the Host Organization	:	MYRADA (Mysore Resettlement & Development Agency)
Status of Hose Organization	:	Non-Governmental Organization
Address	:	MYRADA
		No.2 Service Road,
		Domlur Layout,
		Bangalore – 560 071
Phone No.	:	080 - 25353166, 25352028, 25354457
Fax No.	:	(91-80) 25350982
Email	:	myrada@myrada.org
Name of the Chairperson	:	Shri.Arvind G.Risbud, IAS., (Rtd)
Mobile No.	:	9449083166
Email		arvindrisbud@yahoo.com

1.3. Name of the Programme Coordinator with phone & mobile No.

Name of Senior Scientist & Head	:	Dr.P.Alagesan
Residential Address		20, Gandhi Nagar
		Gobichettipalayam
		Erode
Phone No.	:	04285 - 226563
Mobile No.	:	+919443897654
Email ID	:	P.Alagesan@icar.gov.in; azhagujanani@yahoo.com

1.4. Year of sanction of the KVK (as per Official Order) : 1991

1.5. Month and year of establishment:

1st April 1992

:

1.6. Total land with KVK (in ha) (Consolidated figure):

S. No.	Item	Area (ha)
1	Under Buildings	3 ha.
2.	Under Demonstration Units	1 ha.
3.	Under Crops	18 ha.
	Total	22 ha.

1.6. Infrastructural Development:

A) Buildings

		Source of	Stage					
S	Name of	Tunung		Complete	d	Incomplete		
No.	building		Completion Date	Plinth area (Sq.m)	Expenditure (Rs.)	Starting Date	Plinth area (Sq.m)	Status of construction Completed
1.	Administrativ e Building	ICAR	8/20/1997	172	667821	-	-	Completed
2.	Farmers Hostel	ICAR	11/22/2011	300	3489820	-	-	Completed
3.	Staff Quarters for PC	ICAR	2/10/1993	87	199081	-	-	Completed
4.	Staff Quarters for SMS	ICAR	7/22/1998	396	1611956	-	-	Completed
5.	Vehicle Shed	ICAR	12/24/2010	46.45	198159	-	-	Completed
6.	Cattle and Poultry shed	ICAR	11/27/2012	111.50	797956	-	-	Completed
7.	Processing Unit	MYRADA	17/08/2015	60	33000	-	-	Completed
8.	Home Science Lab	MYRADA	3/25/2017	200	200000	-	-	Completed

B) Vehicles

Type of vehicle	Year of purchase	Cost (Rs.)	Total kms covered as on 31.12.2021	Present status
Mahindra – Jeep	2017	7,99,671.00	139,194	Running condition
Hero Honda Super splendor TN36M1042	2009	49,964.00	47001	Running condition
Hero Honda Super splendor TN36M1017	2009	49,964.00	37308	Running condition

C) Equipment & AV aids

Name of the equipment	Year of purchase	Cost (Rs.)	Present status
Soil Test Lab equipment	2004	5,18,766.00	Good Condition
Xerox cum Printer	2004	75,000.00	Not in use
Canon Digital Camera	2005	9,495.00	Not in use
Kodak Digital Camera	2005	8,155.00	Not in use
Power weeder	2007	76,960.00	Good Condition
Rotary weeder & tiller	2007	99,996.00	Good Condition
Chisel Plough	2007	8000.00	Good Condition
LCD, Computer System& Printer	2007	1,00,000.00	Good Condition
Direct Paddy Seeder	2008	4,500.00	Good Condition
Rotovator	2008	76,960.00	Good Condition
Cono weeder	2009	3,400.00	Good Condition
Fax Machine	2009	15,000.00	Not in use
Tractor	2010	4,99,800.00	Good Condition
Plant health diagnostic equipment	2010	9,99,196.00	Good Condition
Coconut tree climber	2010	2,500	Good Condition
Zero Seed Drill	2010	47500.00	Good Condition
Eepabx system	2011	26,395.00	Not in use
Generator	2011	2,79,520.00	Good Condition
Power Tiller	2011	1,41,590.00	Good Condition
Maize Dehusker	2011	44,720.00	Good Condition
Groundnut Pod Stripper	2011	24,700.00	Good Condition
Laser guided land leveler	2011	3,60,000.00	Good Condition
Bud chipper (Sugarcane)	2011	6,656.00	Good Condition
Chaff cutter	2012	19,425.00	Good Condition
Tamarind Dehuller	2014	36,750.00	Good Condition
Millet Dehuller (Centrifugal)	2014	Kind	Good Condition
Millet Dehuller (CIAE)	2014	Kind	Good Condition
Millet Destoner cum Grader	2014	Kind	Good Condition
Pulverizer	2014	Kind	Good Condition
Millet Dehusker	2015	Kind	Good Condition
Millet Mill	2015	Kind	Good Condition
Packaging Machine-Polythene Bags	2015	Kind	Good Condition
Packaging Machine-Gunny Bags	2015	Kind	Good Condition
Flour Shifter	2015	Kind	Good Condition
Millet Pulverizer	2015	Kind	Good Condition
Mridaparikshak Soil Test Kit	2015	83,000.00	Good Condition
HP Pavilion Computer	2016	32,900.00	Good Condition
HP LaserJet Printer 1020+	2016	9,000.00	Good Condition
Canon Printer LBP2900	2016	8,900.00	Good Condition

Name of the equipment	Year of purchase	Cost (Rs.)	Present status
UPS with Batteries	2016	74,000.00	Good Condition
External Hard Disc Drive	2017	9,800.00	Good Condition
HP Scanner	2017	9,000.00	Good Condition
Podium (PAS)	2017	32,500.00	Good Condition
Photocopier with Tray	2017	54,224.00	Good Condition
Mridaparikshak Soil Test Kit	2017	86,000.00	Good Condition
Arecanut Dehusker	2018	52,000.00	Good Condition
Spiral Separator	2018	4,500.00	Good Condition
Tamarind dehuller cum Deseeder	2018	56,000.00	Good Condition
Egg Hatchery Machine (1000 eggs capacity)	2019	1,12,000.00	Good Condition
Micro-Tek UPS with Duro Power Battery (12V)	2019	36,000.00	Good Condition
Auto Clave with Laminor Air Flow (53 Ltr Capacity)	2019	1,64,993.00	Good Condition
Mini Single Twist Rope Making Machine	2019	19,234.00	Good Condition
Double twist Rope Making Machine	2019	50,740.00	Good Condition
Pulvariser - Hammer Type (Feed Mixing Machine)	2019	1,76,000.00	Good Condition
Fermenter (100 lit Capacity)	2020	7,24,520.00	Good Condition
Banana Fiber Extraction Machine	2020	1,25,000.00	Good Condition
Milk Processing Equipment (200 Lts/Hr)	2021	7,84,000.00	Good Condition
Whirlpool Fridge 185 ltr	2021	16,600.00	Good Condition
Whirlpool Fridge 215 ltr with stand	2021	20,200 .00	Good Condition
Steel Bero 6 Feet	2021	14,600.00	Good Condition
Electronic Balance Weighing Machine 20 Kg Capacity	2021	21,240.00	Good Condition
Colony Counter	2021	30,680.00	Good Condition
Dell Desktop Computer & Dell Monitor 19.5"	2021	5,500.00	Good Condition
Printer - Canon Laserjet (MF244Dw)	2021	24,500.00	Good Condition
Bulk Milk Cooler BMC-500	2021	2,65,500.00	Good Condition
Khova Machine - 130 Ltrs (Ghee processing Machine)	2021	1,09,760 .00	Good Condition
Dairy Equipments:-			
Insulated Sintex Milk Can	2021	40,120.00	Good Condition
SS Milk Can (40 Lts Capacity)	2021	1,62,840.00	Good Condition
Milk Analyzer	2021	9,440.00	Good Condition
Butter Chumer	2021	7,080.00	Good Condition
Curd Chuming Machine	2021	7,080.00	Good Condition
Ice Box	2021	11,800.00	Good Condition
Freezer - 500 Ltrs (Blue Star)	2021	41,000.00	Good Condition
Freezer - 200 Ltrs (Blue Star)	2021	27,000.00	Good Condition
Can Brushers	2021	9,440.00	Good Condition
Cleaning Motor Assembly	2021	35,400.00	Good Condition
Cleaning Vessels - SS	2021	43,660.00	Good Condition
Banana Fiber Cutter	2021	38,704.00	Good Condition

Name of the equipment	Year of purchase	Cost (Rs.)	Present status
Water Chiller Tub	2021	18,500.00	Good Condition
MS Display Shelf (W-15 Ft x H- 6 Ft)	2021	33,040.00	Good Condition
SS Milk Can (40 Lts Capacity)	2021	67,966.00	Good Condition
Benchtop Incubator cum Orbital Shaker	2021	1,26,260.00	Good Condition
SMART SCS-300 Off Lie Cream Separator	2021	76,700.00	Good Condition
Milk Analyzer - Ekomilk Ultra	2021	70,800.00	Good Condition
Insulated Tank	2021	1,06,200.00	Good Condition
100 Ltr SS Storage Tank	2021	29,500.00	Good Condition
Stabilizer - 5 KVA	2021	22,125.00	Good Condition
200 LPH Holding Coil with Accessories	2021	59,000.00	Good Condition

1.7. A). Details SAC meeting* conducted in the year

S.No.	Date	No of	Salient Recommendations
		Participants	
1.	30.11.2021	62	KVK can act as a facilitator to provide adequate institutional and
			technical linkages for their organizational development of FPO
2.			CICR has Lecanicilium lecanni technology, which can be promoted by
			KVK to increase the mass production for the management of bollworms
			and sucking pests
3.			Demonstrate the Cotton varieties like Subiksha, Suraksha and Sumantha
			in KVK technical programme
4.			KVK to source the required FYM and Vermi compost for CICR farm
			with the support of farmers group.
5.			Farmers Scientist interaction meeting can be organized by KVK in order
			to disseminate the technology
6.			Drone technology in Paddy cultivation can be popularized
7.			KVK can involve in conducting camps and provide leaflet / pamphlet
			for managing the disease spread to the livestock growers
8.			KVK can share the performance of CO 11015 Sugarcane variety to
			Sugarcane Breeding Institute, Coimbatore
9.			Sett treatment in sugarcane crop can be popularized by KVK through its
10			FLD programme
10.			Desi bird disease surveillance chart can be prepared and shared by KVK
			to the poultry entrepreneurs in order to control the spread of disease
			TANUVAS Asseel and Namakkal Chicken can be popularized to the
			unreached areas by KVK
11.			IIHR vegetable varieties can be popularized by organizing extension
			programme
12.			KVK can promote YTP 2 Tapioca variety in Kodumudi and
			Modakurichi block through its technical programme
13.			KVK can support for Kisan Credit Card linkage to the farmers in the
			nationalized bank through its extension activities
14.			National and State level workshops / seminar can be organized on the
			Recent technologies in Agriculture and Animal Husbandry with the
			support of NABARD under R&D fund

S.No.	Date	No of Particinants	Salient Recommendations
15.		i ui ticipuitts	Value addition in <i>Lantana camara</i> for large scale adoption can be organized for tribal families in the hills with the support of NABARD
16.			Aromatic crop production can be promoted through producers group in Talavadi / Bargur hills
17.			Farm sector proposals can be submitted for innovative and recent technologies for popularization
18.			Farmers / Entrepreneurs – recording in the AIR studio, can be encouraged to cover more number of farmers from KVK
19.			In association with research station KVK can refine the existing turmeric harvester to avoid breakages in the rhizomes, while harvesting between the furrows
20.			KVK to support for water harvesting models in dry land agriculture system through training and extension programme
21.			KVK to provide skill training programme on Artificial insemination in desi bird production
			KVK in coordination with VUTRC for marketing of pure parental stocks material through their farmers and entrepreneurs networks in the district
22.			KVK can promote Groundnut long duration and drought tolerant variety (CO-6) for enhancing oil content through its technical intervention
23.			Awareness training on Ethno veterinary Medicine can be popularized by KVK to increase the adoption percentage

* Attach a copy of SAC proceedings along with list of participants

2. DETAILS OF DISTRICT (2021)

2.0. Operational jurisdiction of KVKs

District	New districts governed by the KVK after division of the district, if applicable	Taluks/Tehsils and/or Mandals under the KVKs jurisdiction
Erode	-	Anthiyur Taluk
		Bhavani Taluk
		Erode Taluk
		Gobichettipalayam Taluk
		Kodumudi Taluk
		Modakurichi Taluk
		Perundurai Taluk
		Sathyamangalam Taluk
		Talavadi Taluk
		Nambiyur taluk

S. No	Farming system/enterprise				
1	Command Area:	Rice	– Sesame		
		Sugarcane	– Ratoon		
		Turmeric	– Rice		
		Banana	– Ratoon		
		Groundnut	– Rice – Maize		
2	Well Irrigated Area:	Turmeric	– Maize / Chillies / Tomato		
		Rice	– Cotton		
3	Rainfed Area:	Maize/Sorghum	– Pulses		
		Redgram/castor	– Fallow		

2.1. Major farming systems/enterprises (based on the analysis made by the KVK)

2.2. Description of Agro-climatic Zone & major agro ecological situations (based on soil and topography)

S. No	Agro-climatic Zone	Characteristics
1	Southern plateau and	The district comes under the agro-climatic zones of southern plateaus and hills.
	hills	A major part of the district is covered with red soils. Alluvial soils are found in
		small patches along Noyyal and Bhavani rivers. The district forms part of
		Cauvery river basin and is blessed with a network of rivers viz., Bhavani,
		Noyyal, Amaravathi and their tributaries. The river Cauvery flows along the
		eastern border of the district. The normal rainfall of the district is 717 mm.

2.3. Soil types

S. No	Soil type	Characteristics	Area in ha
1	Red soil (Alfisol, Entisol, Ultisol)	 Soil rich in iron and aluminum oxides Poor in water holding capacity Soil pH varies from 5.5 – 8.5 EC ranges from 0.050 to 0.250dSm⁻¹ Fertility rating – low nitrogen, medium phosphorus and high in potassium 	3, 42,800
2	Black soil (Vertisol, Entisol)	 Black in colour Good in water holding capacity Soil pH varies from 7.5 – 8.7 EC ranges from 0.150 to 0.450dSm⁻¹ Fertility rating – low nitrogen, low phosphorus and medium in potassium 	1, 79,562
3	Alluvial soil	 Medium in water holding capacity Soil pH varies from 6.5 – 8.0 EC ranges from 0.120 to 0.370dSm⁻¹ Fertility rating – low nitrogen, medium phosphorus and medium in potassium 	65,295
4	Forest soil	Rich in sesqui oxides	2, 28,543

2.4. Area, Production and Productivity of major crops cultivated in the district (or the jurisdiction as the case may be) for 2021

S. No	Сгор	Area (ha)	Production (Qtl)	Productivity (Qtl /ha)
1	Paddy	48492	1380900.00	49.69
2	Ragi	5512	1479700.00	26.29
3	Maize	10214	781518.40	76.51
4	Redgram	1462	16310	11.16
5	Blackgram	658	5803.60	8.82
6	Greengram	468	3320	7.10
7	Sugarcane	7107	8315190	1170
8	Groundnut	14979	352006.50	23.50
9	Sesame	452	4330.16	9.58
10	Turmeric	12837	651090.00	50.64
11	Tapioca	5892	2371600.00	402.51
12	Banana	5246	1593560.00	551.49
13	Onion	1275	1300300.00	101.98

Kharif

Rabi

S. No	Сгор	Area (ha)	Production (Qtl)	Productivity (Qtl /ha)
1	Paddy	22837	376810.00	49.69
2	Ragi	117	2926.00	25.01
3	Maize	4348	279141.60	64.20
4	Blackgram	595	5426.40	9.12
5	Sugarcane	5140	6116400.00	1190.00
6	Groundnut	2350	56517.50	24.05
7	Sesame	3041	29558.52	9.72
8	Tapioca	810	313794.00	387.40
9	Banana	4190	2019580.00	482.00

Summer

S. No	Сгор	Area (ha)	Production (Qtl)	Productivity (Qtl /ha)
1	Groundnut	1650	37950.00	23.00
2	Sesame	1800	17460.00	9.70
3	Cowpea	917	6240.00	6.80
4	Jowar	44	880.00	20.00

2.5. Weather data

Month	Rainfall (mm)	Tempera	ature ⁰ C	Relative Humidity (%)
		Maximum	Minimum	
January 2021	59.74	31.2	20.2	66.4
February 2021	20.38	32.5	23.3	63.1
March 2021	00.00	35.4	22.3	68.3
April 2021	99.73	37.2	26.4	62.1
May 2021	49.04	35.7	27.1	63.4
June 2021	35.34	34.4	21.2	65.2
July 2021	62.98	36.1	24.7	63.2
August 2021	80.64	34.2	25.2	66.1
September 2021	76.71	36.2	23.1	67.7
October 2021	283.67	35.3	21.0	73.6
November 2021	180.49	31.2	23.2	63.4
December 2021	53.84	28.7	21.2	61.3

2.6. Production and productivity of livestock, Poultry, Fisheries etc. in the district (2021)

Category	Population	Production (000 tones)	Productivity
Cattle	398572	212.402	2.32 lit/day
Crossbred	250385	175.057	3.026 lit/day
Indigenous	148187	37.345	1.091 lit/day
Buffalo	230004	102.302	2.11 lit/day
Sheep	560015	346 tons	-
Goats	562270	685.81 tons	-
Pigs	7288	-	-
Poultry	5180399	-	-
Desi	-	194.51 lakhs eggs	-
Improved	-	9376.49 lakhs eggs	-
Ducks	68193	-	-
Category	Area	Production (tones)	Productivity
Inland fish	-	520.16	-

2.7. Details of Adopted Villages

S. No.	Taluk/ Mandal	Name of the block	Name of the village	Year of adoption	Major crops & enterprises	Major problem identified	Identified Thrust Areas
1	TN Palayam	TN Palayam	Kallipatti	2019	Paddy	Micronutrient deficiencies	Method demonstrations, awareness camp
2	Ammapet	Ammapet	Kurichi	2017	Pulses	Non adoption of ICM practices & Poor yield	Training & Method demonstrations
3	Perundurai	Perundurai	Polaniacken palayam & Varapalayam	2021	Groundnut	Poor soil fertility and pod development	Training & Method demonstrations
4	Chennimalai	Chennimalai	Vellode	2021	Paddy	Seasonal occurrence of Pest and diseases	FLD / Training / Field day
5	,,	,,	Vellode	2021	Vegetables	Unaware of Dish Garden system in vegetable cultivation	FLD / Training / Field day
6	,,	,,	Varapalayam	2021	Farm Machinery	Lack of awareness on farm machineries for Stone Remover	Training
7	Gobi	Gobi	Kotupuallmpal ayam	2021	Marigold	Lack of awareness on new variety	OFT/Training / Experience Sharing
8	"	"	Nadgadevampa layam	2020	Tapioca	Lack of awareness on new variety	OFT/Training / Experience Sharing
9	Anthiyur	Anthiyur	Thurusanam palayam	2018	French beans	Lack of awareness on new variety	FLD / Training / Field day
10	Sathy	Talavadi	Talavadi	2020	Rosemary	Lack of awareness on new variety	FLD / Training / Field day
11	Kodumudi	Modakurichi	Pasur and Elumathur	2019	Groundnut	Yield loss due to leaf miner incidence and nutrient deficiency	FLD / Training / Field day
12	Gobi	T.N.Palayam	Kongarpalaya m	2020	Cassava	Micronutrient deficiency	OFT/Training / Experience Sharing
13	Gobi	Gobi	Koogalur	2020	Sugarcane	Micronutrient deficiency	FLD/Training/ Field Day
14	Anthiyur	Ammapet	Poosariyur	2021	Blackgram	Nutrient deficiency	FLD/Training/ Field Day

S. No.	Taluk/ Mandal	Name of the block	Name of the village	Year of adoption	Major crops & enterprises	Major problem identified	Identified Thrust Areas
DFI	villages						
1	Anthiyur	Anthiyur	Koochikallur	2020	Nutrition garden	Lack of consumption of vegetables	Training and demonstration
2	>>	>>	"	2020	Blackgram, Maize	IPM for FAW and YMV resistant variety	Assessment, Training, Demonstration
3	Gobi	TN Palayam	Singiripalayam	2020	Paddy	Imbalanced nutrient application	Training and awareness camp
4	>>	,,	,,	2019	Decentraliz ed production of inputs	Non adoption of technical guidance	Method demonstration
5	"	"	"	2021	Cotton	High crop weed competition	Training and demonstrations
6	>>	,,	,,	2021	Farm Machinery	Lack of awareness on farm machineries for Inter cultivator cum Ridger	Training and demonstrations
7	>>	"	"	2018	Vertical farming system	Lack of knowledge on vertical farming system	Training, Demonstration,
8	"	>>	"	2021	Paddy	Deficiencies of micronutrients	OFT, Training, Experience sharing
9	>>	,,	"	2020	Paddy, Turmeric	Lack of knowledge about soil sampling techniques	Soil health camp

2.8. Priority/thrust areas

Crop/Enterprise	Thrust area
Cassava	Micronutrient management practices for yield enhancement
Sugarcane	Micronutrient management practices
Blackgram	Integrated Nutrient Management
Jasmine	Management for Blossom midge infestation
Blackgram	IPM – Yellow vein mosaic virus resistant variety
Cotton	Inter cropping system for weed management (Assessment & Demonstration)
Marigold	Varietal assessment
Medicinal crops	Varietal assessment (Rosemary and Vetiver)
Banana	Varietal assessment
Entrepreneurship development	Mushroom production
Value addition	Millets
Таріоса	Introducing new variety
Frenchbean	Introducing new variety
Farm mechanization	Stone remover; Inter cultivator cum Ridger
Vegetables	Vertical system for cultivation of vegetables
Medicinal plants	Demonstration on Immune boosting herbal garden

<u>3. SALIENT ACHIEVEMENTS</u>

S.No	Activity	Target	Achievement
1.	Technologies Assessed and refined (No.)	10	10
2.	On-farm trials conducted (No.)	39	39
3.	Frontline demonstrations conducted (No.)	59	59
4.	Farmers trained (in Lakh)	0.012	0.039
5.	Rural Youths trained (in Lakhs)	0.00170	0.00471
6.	Extension Personnel trained (No.)	0.00490	0.00535
7.	Participants in extension activities (in Lakh)	0.1258	0.2666
8.	Production and distribution of Seed (in Quintal)	10	15.5
9.	Planting material produced and distributed (in Lakh)	0.20	0.43
10.	Production of Bio Products (in Kg)	7250	1375
11.	Production of Micro Nutrient (in Kg)	4500	5188
12.	Livestock strains and finger lings produced and distributed (in No.)	-	-
13.	Soil samples tested by Mini Soil Testing Kit (No)	1000	137
14.	Soil samples tested by Traditional Laboratory (No)	2000	4240
15.	Water, plant, manure and other samples tested (No.)	750	328
16.	Mobile agro-advisory provided to farmers (No.)	75	50
17.	No. of Soil Health Cards issued by Mini Soil Testing Kits (No.)	1000	137
18.	No. of Soil Health Cards issued by Traditional Laboratory (No.)	2000	4240

Achievements of Mandated activities (1st January 2021 to 31st December 2021)

Salient Achievements by KVK during the year in Bullet points:

- KVK established Waste Decomposer Production unit, produced **24114 litres of NCOF waste decomposer** with 6 decentralized production units established in the DFI villages with the support of Krishi Mitras. Total **3728 farmers benefited** in the district.
- In coordination with MANAGE, Hyderabad and SAMETI, Tamilnadu, KVK conducted skill training to Input Dealers (DAESI) by covering **40 input dealers** (seed, pesticide and fertilizer)
- 4 trainings organized for Extension officials on importance of **immune boosting garden** at household, backyard kitchen gardening, integrated farming system and Dryland agriculture techniques
- Convergence of programme with resource agency and mobilised sum of Rs.1,14,16,644/- during 2021
- KVK supported **210 rural youths** through ARYA programme Desi bird production, bio inoculants production, value addition in banana and honey enterprises.
- KVK promoted **8 FPOs** in the district for Paddy, Banana, Coconut, Millet, Groundnut and Milk value addition activities. Facilitated for mobilizing Rs. 2,45,60,000/- value of funds to established millet value addition processing center, vegetable preservation, Weather station (IoT technology) and Milk value addition processing unit
- KVK in coordination with Indian Forest Genetic and Tree Breeding (IFGTB), Coimbatore conducted **method demonstration on Cadamba tree**
- KVK received recognition for Best KVK in the Zone X in the respect of Best Performance of Soil & Water Testing Laboratory, Best Implementation of NFSM demonstration and Best programme implementation of Swachhata activities
- KVK promoted **10 farmers, entrepreneurs and innovators received Award** for their contribution in the field of agriculture, entrepreneurship activities and innovations
- In coordination with ICAR ATARI Zone X, Hyderabad and National Bee Board, New Delhi, KVK conducted 3 trainings on Scientific bee keeping techniques for farmers and rural youths by covering 75 participants from Arepalayam Village of Talavadi Block, Thattachankarai vazhi village of Chennimalai Block and Salaipudhur village of Kodumudi Block
- In coordination with NABARD, Chennai, KVK conducted **3 skill training on Value addition in milk and by products** under Livelihood Entrepreneurship Development Programme (LEDP)
- In coordination with NABARD, Chennai, KVK conducted skill training on Craft making from *Lantana camara* for Tribal development
- 31 successful technologies and also impact has been documented
- 162 Success Stories documented in Doubling Farmers Income village
- 30 Success stories documented during the year 2021

4. TECHNICAL ACHIEVEMENTS

4.1 Details of target and achievements of mandatory activities by KVK during 2020

No. of OFTs		Number o	of technologies Number of locations (Villages)		of locations illages)	Total no. of Trials / Replications / Beneficiaries	
Targets	Achievement	Targets	Achievement	Targets	Achievement	Targets	Achievement
Ingets		0		U		0	

OFT (Technology Assessment)

FLD (crop/enterprise/CFLDs)

No of Demonstrations Area in ha		Number of Farmers / Beneficiaries / Replications			
Targets	Achievement	Targets	Achievement	Targets	Achievement
21	21	60	60	195	195

Training (including sponsored, vocational and other trainings carried under Rainwater Harvesting Unit)

Ν	Number of Participants			
Clientele	Targets	Achievement	Targets	Achievement
Farmers and Farm Women	74	104	2500	3999
Rural youth	9	18	250	471
Extn. Functionaries	14	11	650	535

Extension Activities

Nun	nber of activities	Number of participants		
Targets	Achievement	Targets	Achievement	
887 1223		12580	26666	

Seed Production (q)

Target	Achievement	Distributed to no. of farmers
10	15.5	75

Planting material (Nos.)

Target	Achievement	Distributed to no. of farmers
20000	43000	126

4.2 Technology Assessments (OFTs) in Detail

OFT:1

1. Thematic area	:	Integrated Crop Management
2. Title	:	Assess the Performance of inter cropping system in cotton for enhancing profitability
3. Scientists involved	:	SMS (Agronomy)

4. Details of farming situation:

The trial was laid out during Rabi 2020 at Singiripalayam village of TN Palayam block, Erode district and the sowing was taken up in the month of October 2020 under irrigated farming situations. The soil of the trial plots are red loamy in nature. 642 mm of rainfall received during the cropping period with 15 rainy days.

5. Problem definition / description:

Cotton is an important fibre crop cultivated in Erode district over 1000 ha area. The farmers are cultivating hybrids with 120cm x 45cm spacing and the inter space are not been utilized effectively which leads to weed growth and crop weed competition against main crop. To address this, KVK proposed the trial on assessing the inter cropping system in cotton for enhancing the profitability with effective utilization of inter space.

6. Technology Assessed:

Farmer Practice	:	Cotton pure crop
Technology Option-1	:	Cotton + Radish
Technology Option-2	:	Cotton + Black gram

7. Critical inputs given:

Sl.No	Critical inputs	Quantity (Kg)	Value (Rs)
1	Radish seeds	500 grams	1200
2	Black gram seeds	4 kg	520
3	Micronutrients	3 kg	600

8. Results:

Table : Performance of the technology

Technology Option	No.of trials	Yield (q/ha)	Net Returns (Rs./ha)	B:C ratio
Farmers Practice		Cotton – 18.94	72,258.00	1.83
Cotton as pure crop				
Technology 1		Cotton – 18.99;	100870.00	2.13
Cotton + Radish	4	Radish – 48.56		
Technology 2 Cotton + Black gram		Cotton – 19.10; B. Gam – 2.28	86602.50	1.99
		D. Gain 2.20		

Data on other parameters

Technology Option	Crop Equivalent Yield (Q/ha)	Weed Smothering Efficiency(%)
Farmers Practice - Cotton as pure crop	18.94	
Technology 1 - Cotton + Radish	22.60	32.10
Technology 2 - Cotton + Black gram	20.69	26.17

Description of the results:

The on farm trial on "The Performance of inter cropping system in cotton for enhancing profitability" was taken up during the Rabi season 2020 in 4 farmer's field at singiripalayam village of Gobichettipalayam Taluk, Erode district. Before implementation of the trial, the farmers were trained on various aspects of cotton cultivation and importance of inter cropping system in cotton for enhancing the profitability. The farmers were provided with seeds of intercrops like radish, black gram and micro nutrients for the same. The farmers were adopted 120 x 60 cm spacing for cotton cultivation and the interspace utilized for raising intercrops. The scientists from KVK provided regular advisory services time to time for efficient implementation of the trial.

The trial indicated that, the raising of different intercrops in the cotton field reduces the weed growth, not to competitive with main crop and provides income to the farmers at regular intervals. It was observed that, the multitier crops smother the weed growth effectively and recorded 32.10 percent weed smothering efficiency in Technology Option 1 and 26.17 percent weed smothering efficiency in Technology Option 2.

The trial revealed that the farmers harvested the seed cotton yield of 1.89 t/ha in the farmers practice and 1.99t/ha in the Technology Option1 and 48.56 quintal of radish yield; 1.91 ton of seed cotton yield, 2.28 quintal of black gram yield in Technology Option 2.

The crop equivalent yield was worked out based on the existing market price of cotton. The crop equivalent yield of Cotton intercropped with radish was recorded as 22.60 quintal whereas in 20.69 quintal in cotton intercropped with black gram field.

Constraints faced:

Care should be taken during the initial stage of weeding i.e., first hand weeding at 15 - 20 days after sowing, since the intercrops are very young, the labourers (weeding operations) are not able to identify the intercrops properly and consider them as a weed crop.

9. Feed back of the farmers involved:

The farmers felt that, inter cropping system in cotton reduces the weed growth and provided the additional income. Though the technology was provided additional income, growing of inter crops in between the cotton crops need care during the initial stage especially in vegetable crops or proper orientation needs to the agricultural laborer at the time of weeding.

10. Feed back to the scientist who developed the technology:

Inter cropping systems are dynamic interactive practices aimed at better use of the production components like soil, water and nutrients. The noncompetitive crops like black gram and radish in the cotton inter cropping system were advantageous in terms of weed smothering efficiency, net return and employment opportunity to the family members.

OFT: 2		
1. Thematic area	:	Varietal assessment
2. Title	:	Assess the performance of Marigold varieties (L-3, Arka Shakti (MOH 1-2) and Arka Abha (MOH 5-3) for higher productivity
3. Scientists involved	:	SMS (Horticulture)

18

4. Details of farming situation:

The farmers selected from Karattadipalayam village of Gobichettipalayam block in Erode District. The Marigold crop are cultivated under irrigation system with red sandy loamy soil. The Marigold crop was cultivated under the red soils. The crop has been planted in the Kharif season by first fortnight of August 2021. The seeds were received from IIHR, Bangalore.

5. Problem definition / description:

Marigold is one of the most commonly grown flowers for garden decoration and extensively used as loose flowers for making garlands for religious and social functions. Marigold is cultivated in about 5000 ha in the district under irrigated condition Major variety is L-3 (AVT) - susceptible to thrips *spotaptera litura* and leaf spot; low yield (18-20 t/ha) which resulted more cultivation cost and yield reduction. The farmers expected suitable new variety with profuse sympodial branch growth and resistant to pest diseases infestation. Based on that, KVK proposed On Farm Trail, "Assess the performance of Marigold varieties (L-3, Arka Shakti (MOH 1-2) and Arka Abha (MOH 5-3) for higher productivity. Newly released Marigold varieties are high yielding.

6. Technology Assessed:

Farmer's practices	:	L-32
Technology Option 1	:	Arka Shakti (MOH 1-2)
Technology Option 2	:	Arka Abha (MOH 5-3)

7. Critical inputs given:

Sl.No	Critical inputs	Quantity (In Kgs)	Value (Rs)	The farmers supported with
1.	Marigold seeds	250 Grams	2,500	Rs.2,500 worth disease free
				seeds

8. Results:

Table : Performance of the technology

Technology Option	No.of trials	Yield (Q/ha)	Net Returns (Rs./ha)	BC ratio
Farmer practices: L-32	2	180	99503	1.57
Technology Option 1: Arka Shakti (MOH 1-2)		280	185000	1.80
Technology Option 2: Arka Abha (MOH 5-3)		240	160903	1.67

Description of the results:

The trial on "Assess the performance of Marigold varieties (L-3, Arka Shakti (MOH 1-2) and Arka Abha (MOH 5-3) for higher productivity "was taken up during the Kharif season 2021 in 2 farmers field in Karattadipalayam of Gobi block of Erode District. Before implementation of the trails, the selected farmers trained on recent cultivation technology of Marigold. The farmers were provided with good quality seedlings and farmers asked to raise the seedlings in pro tray system for quality production of seedlings. The farmers extended with regular technical advice from KVK and maintain the crop growth in healthy conditions.

The trials indicated that the crop harvested in 2 months after plantation. The crop yield recorded such as 280 Q/ha, 240 Q/ha and 180 Q/ha in T-1 plot, T-2 plot and FP in plot respectively.

9. Feedback of the farmers involved:

Marigold variety - Arka Shakti (MOH 1-2 variety was recorded better yield when compare to other two plots.

10. Feed back to the scientist who developed the technology:

Availability of the planting materials to the farmers is the need of the hour to spread the variety throughout the area. The progressive farmers will be selected with the support of research institution for production of planting materials in the need villages and supplied to the farmers to adopt this technology in larger area.

OFT-3:

1. Thematic area	:	Varietal assessment
2. Title	:	Assess the Performance of Rosemary variety (Ooty -1) for higher productivity
3. Scientists involved	:	SMS (Horticulture)

4. Details of farming situation:

The farmers selected from Gettavadi and Kalmandipuram villages of Talavadi block in Erode District. The rosemary crops are cultivated under irrigation system. The rosemary crop was cultivated under the red soils. The crop planted in the Kharif season by first fortnight of July 2021. The planting materials used as rooted cutting. The trial farmers linked with CMRC and FPO for further area expansion. During the season, the block receives a cumulative rainfall of 325.7 mm with 22 rainy days.

5. Problem definition / description:

Rosemary (herbal spices) crop is an important commercial crop in Erode district with the coverage of round 500 ha area with local variety. Since, the rosemary crop cultivated as a main crop and takes 6 months for yielding after planting. Since, the local variety are not thrive well in Talavadi climatic condition and sustainable to pest and disease, which resulted more cultivation cost and yield reduction. The farmers expected suitable new variety with profuse sympodial branch growth and good essential oil content, suppress the weed growth and resistant to pest diseases infestation. Based on that, KVK proposed On Farm Trail, "Assess the preference of rosemary new variety (Ooty-1) for higher productivity.

6. Technology Assessed:

Farmer's practices	:	Local variety
Technology Option 1	:	Ooty -1
Technology Option 2	:	Ooty local

7. Critical inputs given:

Sl.No	Critical inputs	Quantity (In Kgs)	Value (Rs)	The farmers supported with
1.	Rosemary Rooted	10000	40000.00	Rs.40000.00 worth disease free
	cutting			rooted cutting

8. Results:

Table : Performance of the technology

Technology Option	No.of trials	Yield (Q/ha)	Net Returns (Rs./ha)	BC ratio
Farmer practices:	2	70	90000	1.43
Rosemary (Local variety)				
Technology Option 1:		120	250000	1.69
Rosemary (Ooty -1)				
Technology Option 2:		90	150000	1.56
Rosemary (Ooty local)				

Description of the results:

The trial on "Asses the performance of Rosemary Variety (Ooty -1) for higher productivity "was taken up during the Kharif season 2021 in 2 farmers field in Gettavadi and Kalmandipuram of Talavadi block of Erode District. Before implementation of the trials, the selected farmers were trained on scientific cultivation technology of rosemary, mulching technology and drip irrigation system. The farmers provided with good quality rooted cuttings, and farmers asked to adopt the rooted cuttings treatment with bio fungicides and bio fertilizers. The farmers extended with regular technical advice from KVK and maintain the crop growth in healthy conditions.

Through convergence, the farmers linked with HOPE IN NILGIRIS, Ooty, NABARD and Department of Horticulture trial farmers avail the scientific back stopping and subsidy component for drip and poly mulching Since marketing is an important in rosemary crop and buyback arrangement was made with Hope In Nilgiris, Ooty. The expert from Hope in Nilgiris, Ooty visited and conducted pest and disease surveillance in the trial plots for further dissemination of the crop. The training program organized by NABARD, Erode on 23.08.2021 at Talavadi and 100 farmers were participated. The growth and yield attributes like Individual plant, per plant-harvested weight, plant height, yield and pest & disease incidence were recorded.

The trials indicated that the crop harvested in 6 months after plantation. The crop yield of rosemary as 120 Q/ha, 90 Q//ha and 70 Q/ha in T-1 plot, T-2 plot and FP in plot were recorded respectively.

9. Feedback of the farmers involved:

Rosemary Ooty -1 variety was recorded better yield, cultivation cost and pest and disease incidence was reduced, which was observed in T-1 plot.

10. Feed back to the scientist who developed the technology:

Availability of the planting materials to the farmers is the need of the hour to spread the variety throughout the area. The progressive farmers will be selected with the support of research institution for production of planting materials in the need villages and supplied to the farmers to adopt this technology in larger area.

OFT-4:

1. Thematic area	:	Varietal Assessment
2. Title	:	Assess the Performance of Banana variety (CO-2) for higher Productivity
3. Scientists involved	:	SMS (Horticulture)

4. Details of farming situation:

The trial laid out during Rabi 2020 at Karattadipalayam village of Gobichettipalayam block, Erode district and the planting taken up in the month of October 2020 under irrigated farming situations. The soil of the trial plots are red sandy in nature with available abundant soil nutrient content. 152.9 mm of rainfall received during the cropping period. The planting suckers were received from HC&RI, TNAU, Coimbatore and treated with *Pseudomonas fluorescence* for 15 minutes

5. Problem definition / description:

Banana is the major Horticulture crop cultivated in Erode district around 20,000ha, of which 55% area was covered by Neypoovan variety compare to other varieties like, Red banana, Nendran, Karpooravalli and cultivated under irrigated situation. Continuous cultivation of same and old variety, which is not tolerant to Banana wilt disease, leads to yield reduction. The farmers are not aware of the latest variety released by TNAU. Hence, KVK proposed the OFT on Assess the Performance of Banana variety (CO-2) for higher productivity

6. Technology Assessed:

.

Farmer Practice	:	Red banana
Technology Option-1	:	CO-2
Technology option -2	:	Neypoovan

7. Critical inputs given: (along with quantity as well as value)

Sl.No	Critical inputs	Quantity (Numbers)	Value (Rs)
1	Suckers	50	1000.00
2.	Arka banana special	5 Kgs	1000.00

8. Results:

Table : Performance of the technology

Technology Option	No.of trials	Yield (Q/ha)	Net Returns (Rs. /ha)	B:C ratio
Farmers Practice: Red banana		210	210000.00	1.60
Technology option -1 : CO-2	2	300	360000.00	1.80
Technology option -2 : Ney poovan		240	260000.00	1.69

Technology option		Other parameters			
	Bunch	No. of	No. of fruits/	Disease infestation	
	weight	hands	bunch		
	(Kg)				
Farmers Practice:	11-12	6	70-75	Resistant to nematode, lesser incidence of	
Red Banana				sigatoka leaf spot and fusarium wilt	
Technology Option- 1	12-13	12-14	150-160	Tolerance to nematode, lesser incidence of	
CO-2				sigatoka leaf spot and fusarium wilt.	
Technology Option-2	10	11-12	140-145	Resistant to nematode, lessor incidence of	
Ney poovan				sigatoka leaf spot and fusarium wilt	

Table: Data on Other Parameters:

Description of the results:

The on farm trial on "Assess the Performance of Banana variety (CO-2) for higher productivity was taken up in Karattadipalayam village of Gobichettipalayam taluk, Erode district where the farmers are cultivating Banana with various varieties under irrigated condition. Before implementation of the trial, the training programme was organized on production technology of Banana and importance ad characteristic features of CO-2 variety for selected farmer. The trial was taken up in October 2020 and Harvested on August 2021. During the cropping period, KVK Scientists monitored the plots for surveillance of crop regarding crop growth, pest and diseases infestation bearing capacity of plant.

From the trial observation recorded that, CO-2 variety tolerance to nematode, lesser incidence of sigatoka leaf spot and fusarium wilt compare to other two varsities . It was observed that, on an average 150 -160 fingers/ bunches produced in CO-2 variety, 140-145 fingers/ bunch produced in Ney poovan variety and 70-75 finger / bunches produced in farmer practices plot.

The highest BCR of 1.80 was recorded in CO-2 variety, 1.69 BCR recorded in Ney poovan variety whereas 1.60 BCR recorded in farmers practice plot. From the results of trials, the CO-2 variety improved the income and performance in local climatic condition. Based on the performance, KVK has initiated to popularize that variety under FLD for further area expansion in coming years.

9. Feedback of the farmers involved:

The variety CO-2 performed well in terms of good yield and tolerance to nematode, lesser incidence of sigatoka leaf spot and fusarium wilt and produced more yield per bunch than the existing variety.

10. Feed back to the scientist who developed the technology:

Availability of the seed material to the farmers is the need of the hour to spread the new variety in the district. KVK took initiatives on production of CO-2 suckers with support of progressive farmers and Department of Horticulture for are expansion.

OFT-5:

1. Thematic area	:	Varietal assessment
2. Title	:	Assess the Performance of Vetiver variety (Dharani)
3. Scientists involved	:	SMS (Horticulture)

4. Details of farming situation:

The farmers selected from Athani villages of Anthiyur block in Erode District. The vetiver crops are cultivated under irrigation condition and soil type is red loamy. The crop planted in the Kharif season by first fortnight of September 2020. The planting materials used as rooted slips. During the season, the block receives a cumulative rainfall of 325.7 mm with 22 rainy days.

5. Problem definition / description:

A dense, clumping perennial grass, to 1.5 m in height, native in India and Ceylon. In natural environment, vetiver grows on riverbanks and land up to an altitude of 600m. The grass is popular for its quality to combat soil erosion and absorb carbon dioxide, thus erasing carbon footprints. In Erode district, vetiver crop cultivated around 150 ha area with local variety. Since farmers is being cultivated local variety and not thrive well in Erode district climatic condition and susceptible to pest and disease, which resulted more cultivation cost and yield reduction. The farmers expected suitable new variety with more root and good essential oil content, suppress the weed growth and resistant to pest & diseases infestation. Based on that, KVK proposed On Farm Trail on "Assess the preference of vetiver new variety (Dharani) for higher productivity.

6. Technology Assessed:

Farmer's practices	:	Local variety
Technology Option 1	:	Dharani
Technology Option 2	:	Sugantha

7. Critical inputs given:

Sl.No	Critical inputs	Quantity (In Kgs)	Value (Rs)	The farmers supported with
1.	Vetiver Rooted slips	500	2000	Rs.2000/- with good variety

8. Results:

Table : Performance of the technology

Technology Option	No.of trials	Yield (Essential oil) (Q/ha)	Net Returns (Rs/ha)	BC ratio
Farmer practices :Local variety	2	0.18	144800	1.57
Technology Option 1: Dharani		0.39	347600	1.67
Technology Option 2: Sugantha		0.197	157600	1.57

Description of the results:

The trial on "Asses the performance of Vetiver Variety (Dharani) for higher productivity "was taken up during the Kharif season 2021 in 2 farmers field in Athani of Anthiyur block of Erode District. Before implementation of the trails, the selected farmers trained on scientific cultivation technology of Vetiver cultivation. The farmers provided with good quality rooted cuttings and farmers asked to adopt the rooted cuttings treatment with bio fungicides and bio fertilizers. The farmers extended regular technical advice from KVK and maintain the crop growth in healthy conditions.

The trials indicated that the crop harvested and extracted essential oil. Essential oil yield of vetiver as 0.390 Q/ ha, 0.19 Q//ha and 0.18 Q/ha in T1 plot, T2 plot and FP in plot were recorded respectively.

9. Feedback of the farmers involved:

Vetiver (Dharani) is variety was recorded better yield, with more root and good essential oil content.

10. Feed back to the scientist who developed the technology:

Availability of the planting materials to the farmers is the need of the hour to spread the variety throughout the area. The progressive farmers will be selected with the support of CIMAP for production of planting materials in the need villages and supplied to the farmers to adopt the this technology in larger area

OFT-6:

1.Thematic area	:	Integrated Nutrient Management
2. Title	:	Assess the Performance of foliar based micronutrient mixture for Yield enhancement in Cassava
3. Scientists involved	:	SMS (Soil Science and Horticulture)

4. Details of farming situation:

The trial was laid out during Kharif season 2020 at Kongarpalayam village of T.N.Palayam block, Erode district and the planting was taken up in the month of May 2020 under irrigated farming situations. The soil of the trial plots are red loamy soil in nature with the available soil nutrient level of 198 kg, 11.5 kg and 267.5 kg Nitrogen, Phosphorus, Potassium respectively.

5. Problem definition / description

Cassava is an important tuber crop cultivated in Erode district over 10000 ha. area. The farmers are cultivating this crop with the application of macronutrients fertilizers only. To get profitable yield, application of micronutrients are also essential for crop production. Foliar based Micronutrient mixture will ensure the micronutrient deficiency prevailing in Cassava. Hence KVK under taken this intervention to overcome the problem and to provide appropriate technical solution by this trial to Cassava farmers.

6. Technology Assessed: (give full details of technology as well as farmers practice)

Farmer Practice	:	Application of NPK fertilizers only
Technology Option-1	:	Foliar spraying of Cassava special 0.5 % at 2, 3 & 4 month after planting
		(CTCRI, 2017)
Technology Option-2	:	Foliar spraying of 1% Iron sulphate + 0.5 % Zinc sulphate + 2% Urea
		at 60, 75 & 90 days after planting (TNAU, 2016)

7. Critical inputs given:

Sl.No	Critical inputs	Quantity	Value (Rs)
1	CTCRI Cassava special	20 litres	6000
2	Iron sulphate, Zinc sulphate, Urea	30 kg	4000

8. Results:

Table : Performance of the technology

Technology Option	No. of trials	Yield (q/ha)	Net Returns (Rs./ha)	B:C ratio	Other Parameters Starch content (%)
Farmers Practice: Application of NPK		250	60000.00	1.92	25
fertilizers only					
Technology 1 (: Foliar spraying of Cassava		298	80700.00	2.18	27
special 0.5 % at 2,3 & 4 MAP)	5				
Technology 2 (Foliar spraying of 1% Iron		282	73500.00	2.09	26
sulphate + 0.5 % Zinc sulphate + 2% Urea					
at 60, 75 & 90 DAP)					

Description of the results:

The on-farm trial on "Assess the Performance of foliar based micronutrient mixture for yield enhancement in Cassava" was taken up during the Kharif season 2020 in 4 farmer's field at Boothapadi and Chennapatti village of Ammapet block, Erode district. Before implementation of the trial, the farmers were trained about nutrient management in Cassava and importance of micronutrient mixture for yield enhancement in Cassava. The farmers were provided with CTCRI Cassava special and Iron sulphate, Zinc sulphate, Urea as TNAU recommendation for foliar spraying. The scientists from KVK provided regular advisory services time to time for efficient implementation of the trial.

The trial indicated that, foliar spraying of CTCRI Cassava special at three intervals significantly reduces the micronutrient deficiency and thereby increasing the yield of Cassava. Foliar spraying of CTCRI Cassava special (Technology Option 1) recorded yield of 29.8 ton/ha and 25.0 ton/ha yield recorded in farmers practice with the yield increase of 19.2 percent.

The highest Net returns (Rs.80,700/ha) and benefit cost ratio of 2.18 was recorded in Technology Option 1 whereas Rs. 60,000 /ha Net returns and 1.92 BCR recorded in farmers practice. Based on the above results, Foliar spraying of CTCRI Cassava special 0.5 % as 3 times spraying (2,3 & 4 MAP) significantly increases the tuber yield and starch content.

Constraints: Nil

9. Feedback of the farmers involved:

Farmers actively involved in the trial and expressed that, foliar spraying of CTCRI reduces micronutrient deficiency symptoms especially boron, iron and zinc and increases tuber yield and starch content of Cassava. Since, it is a combined pack of essential micronutrients and cost effectiveness, attracting the farmers to adopt this technology.

10. Feed back to the scientist who developed the technology:

CTCRI Cassava special is crop specific, combination of essential micronutrients which needed for the growth and yield improvement of Cassava. The availability of CTCRI Cassava special can be made easily available to the farmers for wider adoption of the technology.

OFT-7

3.	Scientists involved :	SMS (F	Plant Protection) & SMS (Agronomy)
2.	Title	:	Assess the performance of Yellow Vein Mosaic Virus resistant variety In Black gram
1.	Thematic area	:	Integrated Pests Management

4. Details of farming situation:

The farmers selected from Koochikallur DFI village in Anthiyur block and Grey nagar village in Perundurai block of the district. Black gram crop cultivated under red soil and rainfed conditions. The crop has been planted in the Kharif season by first fortnight of August 2021, by adopting the seed treatment of seeds with *Trichoderma viride* followed by sowing of seeds.

5. Problem definition / description:

Black gram is the major pulse crop cultivated in the district with the coverage of 600 ha. Major problem faced by the farmer is yield loss due to yellow vein mosaic virus which is vectored by whitefly. Farmers are also not aware of the recent varieties resistant to yellow vein mosaic virus released by SAUs. KVK conducted on farming testing on the resistant varieties in Black gram crop to see its performance.

6. Technology Assessed:

Farmers Practice	:	VBN 4
Technology Option1	:	VBN 11
Technology Option 2	:	VBN 8

7. Critical inputs given:

Sl.	. No	Critical inputs	Quantity	Value (Rs)	The farmers supported with Blackgram
			(Numbers)		seeds of VBN 11 and VBN 8 worth of
	1.	VBN 11 Seeds	20 Kgs	8,400.00	Rs. 10,600.00
	2.	VBN 8 Seeds	20 Kgs	2,200.00	

8. Results:

Table: Performance of the technology

Technology Option	No.of trials	Yield (q/ha)	Net Returns (Rs. /ha)	B:C Ratio	No. of pods / plant	Pests Infestation Percentage
Farmers Practice : VBN 4		7.56	20,682.00	1.86	24	12.32
Technology 1 : VBN 11	7	8.59	31,520.30	2.26	42	2.42
Technology 2 : VBN 8		8.54	29,528.40	2.20	36	3.59

Description of the results:

The results reveals that the VBN 11 variety yielded 8.59 q/ha with the pests infestation percentage of 2.42; VBN 8 recorded an yield of 8.54 q/ha with the pests infestation percentage of 3.59; whereas in Farmer practice (VBN 4) the yield observed is 7.56 q/ha with the pests infestation percentage of 12.32 respectively. The benefit cost ratio of 2.26 was recorded VBN 11; whereas the BCR was 2.20 in VBN 8 and 1.86 in (VBN 4) Farmers practice respectively.

9. Feedback of the farmers involved:

Farmers expressed that the VBN 11 and VBN 8 varieties performed well in terms of yield and reduced the yellow vein mosaic virus disease, which is vectored by whitefly. Further farmers also felt that we will adopt this technology and share them to other fellow farmers in that region.

10. Feed back to the scientist who developed the technology:

University can support to make available of the VBN 11 seeds in time for wider spread. Further it requires to create awareness and training programme to educate the extension functionaries to know about the recent varieties and their performance for the wider dissemination and large scale adoption.

OFT-8:

1. Thematic area	:	Integrated Pests Management
2. Title	:	Assess the performance of management modules for Blossom Midge in Jasmine
3. Scientists involved	:	SMS (Plant Protection) & SMS (Horticulture)

4. Details of farming situation:

The trial was laid out during Kharif 2021 in the farmers field under irrigated farming situations in Sivaripalayam village of Sathyamangalam Block. The soil of the trial plots were red soil in nature and adopted the spraying of pesticides frequently for managing the pest population (Blossom Midge) which causes infestation and reduced the yield of the crop.

5. Problem definition / description:

Jasmine is the major commercial flower crop and cultivated around 1000 ha in the district. Major problem faced by the jasmine growers are bud worm, blossom midge and red spider mite infestation. Out of which Blossom midge causes severe infestation around 80% which reduces the yield and income loss to the farmers. Since the farmers are advocating the insecticidal spray frequently which leads to resistance of pests to the chemicals and deteriorating the soil health. SAUs and institutes like TNAU and NBAIR comes with the suitable integrated pest management package to address this problem and KVK conducted this trial to know the suitable management practices of this pests.

6. Technology Assessed:

Farmer Practice	:	Spraying of insecticide
Technology Option-1	:	Spray with EPF Fungus Metarhizium anisopliae / Beauveria bassiana
		(NBAIR formulation) @ 5 g/lit. of water three times along with six
		release of Trichogramma chilonis @ 1,00,000/ha and Chrysoperla
		zastrowi sillemi @ 4 – 5 grubs per plant @ 7 days interval from bud
		initiation stage
Technology Option-2	:	Installation of light traps 1/acre, Spray neem seed kernel
		extract 5 %, Spray of Beauveria bassiana 2 g/lit.

7. Critical inputs given:

Sl.	Critical inputs	Quantity	Value (Rs)	The farmers supported with		
No		(Numbers)		Neem seed, Light trap,		
1	Neem Seed	25 Kgs	8,000.00	Beauvaria bassiana and		
2	Light trap	1 Nos. / acre	6,000.00	Metarhizium ansiopliae worth		
3	Beauvaria bassiana	15 Kgs	4,000.00	of Rs. 22,000.00		
4	Metarhizium ansiopliae	15Kgs	4,000.00			

8. Results: Table: Performance of the technology

Technology Option	No.of trials	Yield q/ ha	Net Returns (Rs. /ha)	B:C ratio	Pests Infestation Percentage
Farmers Practice: Spraying of insecticide		74.57	1,36,992.00	2.41	17.38
Technology 1: Spray with EPF Fungus <i>Metarhizium anisopliae /</i> <i>Beauveria bassiana</i> (NBAIR formulation) @ 5 g per lit. of water three times along with six release of <i>Trichogramma chilonis</i> @ 1,00,000/ha and <i>Chrysoperla zastrowi</i> <i>sillemi</i> @ 4 – 5 grubs per plant @ 7 days interval from bud initiation stage	5	94.32	1,57,819.00	2.59	7.53
Technology 2: Installation of light traps 1/acre, Spray neem seed kernel extract 5 %, Spray of <i>Beauveria</i> <i>bassiana</i> 2 g/litre		91.78	1,53,348.00	2.56	7.97

Description of the results:

The results revealed that the spraying of EPF Fungus *Metarhizium anisopliae / Beauveria bassiana* along with the release of parasitoids recorded an yield of 94.32 q/ha with the pests infestation percentage of 7.53; where as in neem seed kernel extract treated plot the observed yield was 91.78 q/ha with the pests infestation percentage of 7.97. In farmers practices the yield observed was 74.57 with the pest infestation percentage of 17.38 respectively. The result indicated by combining all the integrated pests management practices it would manage the pest.

9. Feedback of the farmers involved:

Based on the result farmers felt that this integrated pest management modules helps in reducing the pest infestation by adopting spraying of EPF fungus along with the installation of light trap which manages the pest incidence. Further farmers also felt that we will adopt this technology and share them to other fellow farmers in that region.

10. Feed back to the scientist who developed the technology:

Based on the result it was understand that by combining all the integrated pest management practices and ecofriendly approaches could manage the Blossom Midge pest infestation in Jasmine crop. Further it requires to create awareness and training programme to educate the extension functionaries and jasmine farmers, regarding the management of the pest through the State Department of Horticulture and extension programmes in KVK for the wider adoption of the management techniques.

OFT:9

1. Thematic area	:	Millet enterprise
2. Title	:	Assess the performance of herbals in millets cookies preparation
3. Scientists involved	:	SMS (Home science)

4. Details of farming situation:

The trial entrepreneurs selected from Kallipatti and Karatadipalayam villages of T.N.Palayam and Gobi block of Erode District. Millet enterprise is gaining momentum now-a-days and KVK is providing technical and linkage support for entrepreneurs to establish the units. Millet is being cultivated in hill regions of Erode district.

5. Problem definition / description:

KVK trained entrepreneurs in millets are producing millet biscuit and marketing through, AESC and FPOs. They are lacking in knowledge about herbals inclusion in millet cookies preparation to enhance the immune boosting level of consumers. They approached KVK to provide technology about herbals usage in millet cookies preparation and hence KVK has taken trial on assessment of Herbals in Millet cookies preparation.

6. Technology Assessed:

Farmer practice Technology Option 1	:	Herbal cookies without herbal usage 5 gm dry powder of Thulsai, Karapooravalli, Chekrumanis and ginger
		with 1 kg flour mix
Technology option 2	:	5 ml lemon juice with 5 gm moringa leaf powder for I Kg millet flour

7. Critical inputs given:

Five entrepreneurs selected for the trial in two locations and supported with herbals, jaggery powder, Millets and lemon with worth of Rs. 2000/- each and total cost of the trial was Rs.10,000/-

8. Results:

Table: Performance of the technology

Technology Option	No. of Yield trials (q/ha)		Net 1s (Rs./KG)	B:C	Data on Other performance indicators*	
Farmers Practice (No herbs)		-	75	1.52	Consumer Preference:6.8	
Technology 1(Herbal Mix)	5	-	230	2.21	Consumer Preference- 8.4	
Technology 2(Moringa leaf)		-	170	1.92	Consumer Preference:7.9	

9. Feedback of the farmers involved:

The entrepreneurs expressed that the herbal cookies prepared with more herbals are tastier than single herbal like moringa powder. They also expressed that, KVK can support for marketing the herbal cookies in canteens of Schools and colleges

10. Feed back to the scientist who developed the technology:

The consumer preference is more in TO-1 with combination of herbals. Awareness about herbal cookies can be up scaled through extension system to include in school canteens and ICDS with the support of District administration

OFT-10

1. Thematic area	:	Mushroom enterprise
2. Title	:	Assessment on new oyster mushroom variety
3. Scientists involved	:	SMS (Home science)

4. Details of farming situation:

Five trial farmers selected from Bangalapudhur, and kavindhapadi villages of T.N.Palayam and Gobi of Erode District. Mushroom is one of the allied enterprises of Farm based activities and more consumers are willing to eat mushroom as one of their daily vegetable due to its higher nutritive value.

5. Problem definition:

Farmers are cultivating PFL variety and CO2 variety and they expect new variety with short duration; hence KVK has taken On Farm Trial on Assessment on new oyster mushroom verities with TNAU and IIHR source to benefit the mushroom grower to sustain the enterprises with new varieties.

6. Technology Assessed:

Farmer practice	:	PFL
Technology Option 1	:	ARKA OM-1
Technology Option 2	:	CO2

7. Critical inputs given:

The trial entrepreneurs selected for the trial in two locations and supported with 20 pockets each of CO2 and ARKA OM-1 variety bed spawn with worth of Rs. 2500/- each trial and total cost of Rs.12500.

8. Results:

Table : Performance of the technology

Technology Option	No. of trials	Yield (/kgbed)	Net Returns (Rs./batch/250 beds)	B:C	Data on Other performance indicators
Farmers Practice-(PFL)		1.0	15650	1.78	Consumer
					Preference: 7.1
Technology 1 (ARKA OM-1	5	1.2	27720	2.44	Consumer
	5				Preference: 8.1
Technology 2) (CO2)		1.1	20980	2.08	Consumer
					Preference: 7.6

9. Feedback of the farmers involved:

The entrepreneurs participated in the trial expressed that the APK-1 variety of pink oyster mushroom gives high returns for its short duration of 30 days cycle as compared with other two varieties of 60 days crop cycle. The entrepreneur can get Rs.27720/- per batch with 250 beds and for 5 batches Rs.138600/- per year as profit.

10. Feed back to the scientist who developed the technology:

Framers expressed that the continuous supply of ARKA OM-1 variety could be ensured by research station and spawn cultivation training could be arranged for mushroom entrepreneurs.

4.3 Frontline Demonstrations in Detail

S. No	Crop / Enterprise	Thematic Area	Technology demonstrated	Feedback sent to research system	Details of popularization	Horizontal spread of technology			
	•		as follow up from OFT		methods suggested to the Extension system	No. of villages	No. of farmers	Area in ha	
1	Finger millet	ICM	Short duration variety ML365 & Co15	Submitted and KVK initiated seed production with department	Demonstration and mini kit programme	16	2025	1825	
2	Black gram	ICM	Variety along with IPNM practices	Submitted for ensuring the availability of quality seeds	Method demonstration	20	300	510	
3	Green gram	ICM	Short duration variety CO-8	Submitted and initiated seed production with farmers group	Method demonstration	12	260	125	
4	Cassava	ICM	Yethapur-1	Planting material produced with the support of extension system	Demonstration	2	5	2	
5	French beans	ICM	Arka Arjun	Seed material produced with the support of extension system	Demonstration	2	5	2	

a. Follow-up of FLDs implemented during previous years

b. Details of FLDs implemented during the reporting period

Sl.	Crop	Thematic area	Technology Demonstrated	Season	Farming	Source	No. of	No. of	No. of	Area (ha)		Justification for
No.				and	situation	of funds	locations	demo	SC/ST	Proposed	Actual	shortfall if any
- D 1				year					farmers			
Pulse	S	Г						_				
1	Blackgram	INM	INM Blackgram (VBN8)	Rabi	Rainfed	ICAR	1	5	-	2	2	-
Com	mercial Crops	5		r								
2	Cotton	ICM	Intercropping with pulses	Kharif	Irrigated	ICAR	1	4	-	1.6	1.6	-
3	Sugarcane	INM	TNAU Sugarcane Booster	Kharif	Irrigated	ICAR	1	5	-	2	2	-
Tube	r crop											
4	Tapioca	Varietal demo	TNAU YTP-2	Kharif	Irrigated	ICAR	2	5	-	2	2	-
Veget	table crop	•	·	•							•	
5	French	Varietal demo	IIHR Arka Arjun	Kharif	Rainfed	ICAR	2	2	-	2	2	-
	Bean		5									
Lives	tock Product	ion Management										
-	-	-	-	-	-	-	-	-	-	-	-	-
Farm	Mechanizati	on										
6	Cultivable	Farm	Stone Remover	Kharif	Irrigated	ICAR	2	4	-	1	1	-
	Land	Machinery										
7	Banana	Farm	Inter cultivator cum	Kharif	Irrigated	ICAR	2	4	-	1	1	-
		Machinery	Ridger		_							
Wom	en and Child	ren										
8	Vegetable	Health &	Demonstration on vertical	-	Irrigated	ICAR	2	10	-	1 cent	1 cent	-
		Nutrition	garden in households									
9	Herbal	Health &	Demonstration on	-	Irrigated	ICAR	2	10	-	1 cent	1 cent	-
		Nutrition	immune boosting herbal		_							
			garden									
10	Greens	Health &	Demonstration on	-	Irrigated	ICAR	5	10	-	1 cent	1 cent	-
-		Nutrition	cultivation on Micro		0	_	-	-				
			greens									

5. Training Programmes

5.1 Technical Feedback on the demonstrated technologies

S.	Feed Back
No	
1	Cotton: Inter cropping systems are dynamic interactive practices aimed at better use of the production
	components like soil, water and nutrients. The noncompetitive crops like black grain and radish in the
	conton much cropping system were advantageous in terms of weed smothering efficiency and net
2	Concerne for the faithing community
2	variety of Mulluvadi, KVK planned an area expansion of Technology in other parts of the district
3	French Beans: Arka Ariun variety performed well in Bargur hills compare to ruling variety
5	Arka komal. For wider adoption, KVK plan to scaling up the technology in other parts of the
	Arka Komai, For while adoption, KVK plan to scaning up the technology in other parts of the
4	Inny regions
4	Sugarcane: Fonar application of Sugarcane booster @ 45, 60 and 75 days after planting rectify the
	micro nutrient deficiency in sugarcane. 22 % yield increase was noticed as compared to farmers
5	Plack grom: Demonstration on NIM practices in block grom increases the yield up to 17 percent
5	black grain. Demonstration on invit practices in black grain increases the yield upto 17 percent
6	Vertical farming: From DEL villages, the technology has been adopted at schools and household level
0	2 technocrats developed for field level implementation of the technology. One demo model unit has
	been established at KVK instruction farm. In rack model hanging system also developed at KVK demo
	unit. Leaflets published for awareness creation. Apart from Erode The technology spreaded over
	Krishnagiri and other parts of the Tamilnadu, KVK established models in Schools, DFI villages and
	CMRCs
7	Immune Boosting Herbal Garden: The immune boosting herbal garden made easy to women to
	treat the common ailments for the family members at the doorsteps. Awareness created to the farming
	community to establish herbal nursery plants in the future to sustain the garden.
8	Micro green cultivation: F
9	Stone Remover: It makes the land suitable for cultivation; Helps in yield improvement; Helps
	in moisture conversation of the land; It is economically useful with the respect of cost
	reduction and time saving; Easy implementation of machines to remove stones and pebbles
10	Inter cultivator cum Ridger: This machinery helps in lodging and weeding with bunding
	formation; Yield is high, Reduction in labour cost
6. Farmers' reactions on specific technologies

S. No	Feed Back
1	Cotton: The farmers felt that, inter cropping system in cotton reduces the weed growth and provided
	the additional income. Reduces the labour dependency for weeding operations
2	Cassava : Farmers expressed that YTP-2 variety, which is giving better yield, high starch content
	and resistant CMD and produced 658Q/hac
3	French Beans: Farmers felt that Arka Arjun variety performed well and produced 122 q/ ha.
	and fetch good market price
4	Sugarcane: Farmers expressed that, foliar spraying of sugarcane booster reduces the nutrient
	deficiency and improves the cane yield
5	Blackgram: Farmer expressed that, demonstration brought awareness on INM practices in
	blackgram cultivation. The integrated approach enable to get better yield and income
6	Vertical farming: The family members can access for fresh organic vegetables at doorsteps.
	By adopting this technology, increased consumption of the vegetables and greens by women
	and children throughout the year & the structure is easy to maintain
7	Immune Boosting Herbal Garden: The family members harvested herbs from twenty
	herbal plants to cure common ailments like fever, cold, indigestion problem and they
	reduces the medical expenses from Rs.1500 to 2000 /- per year. Some plants helps to
	increase the immunity power like checkruminias, Moringa, curryleaf etc,.
8	Micro green cultivation: The microgreen demonstration helped the Anganwadi workers to
	cook nutritious food for the vulnerable children. The taste of greens is more when compared
	to matured greens. The workers were created awareness on importance of microgreen at
	Anganwadi centre to improve the nutritional status of the children.
9	Stone Remover : Labour reduction in removing the stones and pebbles; Helps to overcome
	the yield loss because of stones; Helps in irrigation difficulty
10	Inter cultivator cum Ridger: Helps in labour scarcity in bunding formation; Reduction in
	cost; Helps to overcome the yield loss; Implements is useful for time of operation

7. Extension and Training activities under FLD

Sl.No.	Activity	No. of activities organized	Number of participants
1	Field days	10	178
2	Farmers Training	21	874
3	Media coverage	6	-
4	Training for extension functionaries	3	189

8. Performance of Frontline demonstrations

8.1 Frontline demonstrations on crops

	Thomatia	Technology	Nam Variety	e of the y/ Hybrid	No. of	Area		Yiel	d (q/ha)		%	Economi	cs of demon	stration (R	s./ha)		Economics (Rs./	of check ha)	
Crop	Area	demonstrated	Domo	Check	Farmers	(ha)	-	Demo			Increase	Gross	Gross	Net	BCR	Gross	Gross	Net	BCR
						, í	High	Low	Average	Check	in yield	Cost	Return	Return	(R / C)	Cost	Return	Return	(R / C)
Cotton	ICM	Promotion of pulses cultivation as an intercrop in cotton cultivation for enhancing yield and controlling the weeds	VBN 8		4	1.6	21.56	20.84	20.92	18.09	16	86825	176781.25	89956.25	2.04	87375	142967.5	55592.5	1.64
Blackgram	INM	Demonstration of Integrated Nutrient Management in Blackgram	VBN 8		5	2	8.78	8.35	8.73	7.48	17	24950	54800	29850	2.20	23800	44200	20400	1.86
Sugarcane	INM	Demonstration of micronutrient management in Sugarcane	CO 0212		5	2	1335	1259	1297.3	1065.4	22	146650	346379	199729	2.36	144235	284461	140226	1.97
Tapioca (Cassava)	Variety	YTP-2 released in 2020, 46.20 t/ha	YTP		5	2	678	639	658	380	73	109999	307500	197501	2.80	102247	241932	139685	2.37
French Bean	Variety	Arka Arjun, Plants are bushy, Vigorous	ArkaAa rjun		2	2	132	112	122	99	23	104992	271590	166598	2.59	99598	212477	112879	2.13
Kitchen Garden	Kitchen Garden	Demonstration on vertical garden in households			10	2 units	3.40	3.12	3.24	-	-	3695	9393	5698	2.54	-	-	-	-
Health and nutrition	Health and nutrition	Demonstration on Immune boosting herbal garden in Rooftop models/ Backyard	-	-	10	10 units	42.50	40.50	42	-	-	3500	8700	5200	2.49	-	-	-	-
Nutri garden	Nutri garden	Demonstration on cultivation on Micro greens	-	-	238 (Children & Women)	10 units	17.0	15.60	16	-	-	2360	5150	2790	2.18	-	-	-	-

8.2 Frontline demonstrations on Livestock : Nil

8.3 Frontline demonstrations on Farm Implements and Machinery

Name of the implement	Сгор	Technology demonstrated	No. of Farmer	Area (ha)	Major parameters	Filed observation (output/man hour)% change in major		Labor reduction (man days)				Cost reduction (Rs./ha or Rs./Unit etc.)				
						Demo	Check	parameter	Land preparation	Sowing	Weeding	Total	Land preparatio n	Labour	Irrigatio n	Total
Stone remover	-	Stone remover in cultivable land	4	1	Coverage ha/ labour	0.024	0.008	200	83	-	-	83	41500	83	-	41500
Inter cultivator cum Ridger	Banana	Inter cultivator cum Ridger in Banana	4	1	Coverage ha/ labour	0.072	0.028	157	12	-	10	22	11000	22		11000

<u>1. Productivity Enhancement in Blackgram (Vigna mungo L.) through Improved Crop</u> <u>Management Practices on Farmers' Field</u>

S. Saravanakumar, P. Alagesan, A. Premalatha, R. D. Srinivasan and M. Thirumoorthi

Abstract:

Urd bean (*Vigna mungo* L.) or black gram is one of the important pulse crop cultivatedover 1000 ha area in Erode district of Tamil Nadu. Attempts were made to reduce the yield gap of black gram by adopting integrated crop management practices through cluster frontline demonstrations during 2016-2020 in 250 farmers' field. The integrated crop management practices comprised of high yielding black gram variety, seed treatment with rhizobium, foliar application of micronutrients, integrated plant protection measures were demonstrated. The results showed that number of pods and seeds per plant were increased by 7.66 and 10.54 per cent respectively over farmers practice. Similarly the average higher grain yield of 7.68 quintal/ha recorded in demonstration plots compared to 6.51 quintal/ha in farmers practice with a yield advantage of 17.99 per cent over the farmer practices. The average extension gap, technology gap and technology index were 1.17 quintal/ha, 0.83 quintal/ha, and 9.75 per cent respectively. About 71.6 per cent farmers were satisfied with the improved crop production technologies. Considering the above facts, Frontline demonstrations were carried out in a systematic and scientific manner on farmer's field to show the worth of improved production management technologies in black gram for further adoption.

Introduction

Ensuring nutritional security to an ever growing population and sustainable crop production are the priorities of the scientistand extension workers in India. Black gram (*Vigna mungo* L.)popularly known as *Urd* cultivated in most part of the India throughout the year especially the marginal lands and dry tracts. The crop is originated in India and cultivated from the ancient time. Indians consume around 30 per cent of the world's pulses, but domestic production of pulses which became stagnated in recent two decade and has not kept pace with population growth. The net availability of pulses has come down from 60.70 g per day per person in 1951 to 31.6 g per day per person in 2010 but as per recommendation of Indian Council of Medical Research, 65 g pulses are required per day per person.

Ensuring nutritional security to an ever growing population and sustainable crop production are the priorities of the scientist and extension workers in India. Black gram (Vigna mungo L.) popularly known as Urd cultivated in most part of the India throughout the year especially the marginal lands and dry tracts. The crop is originated in India and cultivated from the ancient time. Indians consume around 30 per cent of the world's pulses, but domestic production of pulses which became stagnated in recent two decade and has not kept pace with population growth. The net availability of pulses has come down from 60.70 g per day per person in 1951 to 31.6 g per day per person in 2010 but as per recommendation of Indian Council of Medical Research, 65 g pulses are required per day per person.

Black gram is one of the important pulse crops of India. It plays a vital role in soil fertility enhancement through atmospheric nitrogen fixation, root nodulation as well as nutritional security for human beings especially for protein supplement. Black gram is cultivated as pure crop, inter crop and rice fallow in most of the region based on the climatic conditions. It is cultivated mostly on the marginal lands, under rain fed situations. One of the important reason for low productivity is poor fertility levels of the soil. The problem is compounded by the fact

that the majority of the farmers in the rain fed regions are lack of awareness on new and high yielding varieties, resource poor with low risk bearing capacity and they generally do not apply recommended practices. Many times pulses are cultivated as a mixed / intercrops and the productivity of black gram is very low in Erode district (731 kg/ha) of Tamil Nadu when compared to the yield potential of the crop. This indicates that there is a wide scope for increasing the productivity of black gram by proper management practice.

The productivity of black gram per unit area could be increased by adopting improved practices in a systematic manner along with high yielding varieties (Rai et al., 2015). Frontline demonstration is the new concept of field demonstration evolved by Indian council of Agricultural Research, New Delhi with the main objectives of demonstrating new varieties or technologies and its management practices in the farmers' field. The newly and innovative technology having higher production potential under the specific cropping system can be popularized through FLD programme. The frontline demonstrations were carried out in a scientific way in order to show the worth of the new variety and improved practices for enhancing the black gram productivity.

Methodology

The study was carried out in Erode District of Tamil Nadu during 2016-17 to 2019–2020 in 6 clusters in 3 blocks of Erode district by covering 100 hectares in 250 farmers' field. The frontline demonstrations were laid out in 75 farmer's field covering 30 ha in both 2016-17 and 2017–18 similarly 50 demonstrations laid out in both 2018-19 and 2019-2020. Each demonstration was conducted in an area of 0.4 ha and adjacent to the farmers' fields in which the crop was cultivated with farmers practice/variety taken as control or check plot. The soil of the demonstration plots are red sandy in nature with the pH range of 6.0-8.2.

The selected progressive farmers were trained on all scientific black gram cultivation aspects like selection of varieties, seed treatment, sowing, integrated nutrient and pest management, harvesting and post-harvest management before starting of frontline demonstrations. The improved variety of black gram (VBN 6) was selected for demonstration. The variety VBN 6 released from Tamil Nadu Agricultural University, Coimbatore during the year 2011. The special features of the selected variety are resistant to yellow mosaic virus diseases, synchronized maturity and duration of 65-70 days with the production potential of 850 kg/ha. The seeds were treated with bio-fertilizers and then taken for sowing. Optimum plant populations were maintained in the demonstrations. The demonstrated fields were regularly monitored and periodically observed by the scientists of KVK.

The yield gap analysis is a potent research technique that has been introduced in the 1970s. Developed by the International Rice Research Institute (IRRI), it is extensively used to measure and analyze determinants of the yield gaps. It is also observed that, even though the production level has increased to a great extent in the recent past; still there exists a wide gap between the actual yield obtained by the growers and the production level actually possible with the existing modern technology. To study the impact of frontline demonstrations, data from FLD and farmers practices were analyzed. Other parameters like increasing in yield (%), technology gap (%), extension gap (%) and technology index were worked out as suggested by Kadian et al., (1997). Yield gap refers to the difference between the potential yield and actual farm yield. Potential yield refers to that which is obtained in the experiment station. At the time of harvest yield data were collected from both the demonstrations and farmers practice. Cost of cultivation, net income and benefit cost ratio were worked out. The yield is considered to be the absolute maximum production of the crop possible in the given environment, which is attained by the best available methods and with the maximum inputs in trials on the experiment station in a given season. Demonstration yield is the yield obtained on the demonstration plots on the cultivators' fields with respect to infrastructural facilities and environmental conditions. Actual yield refers to the yield realized by the farmers on

their farms under their management practices. The extension gap, technology gap and technology index were calculated using the formula as suggested by Samui et al., (2000).

Extension gap (qtl / ha) = DY (qtl /ha)–LY (qtl/ha) Technology gap (qtl / ha) = PY (qtl /ha)–DY (qtl/ha)

Technology Index (%) = $\frac{PY (qtl /ha) - DY (qtl / ha)}{PY(qtl /ha)} \times 100$

Where, DY = Demonstration Yield, LY = local Check Yield, PY = Potential Yield of variety,

The farmers were personally interviewed with well structured interview schedule. Client satisfaction index was calculated as developed by Kumaran and Vijayaragavan (2005). The individual obtained scores were calculated by the formula as:

The individual obtained score

Client Satisfaction Index (%) =

Maximum score possible

Results and Discussion

The result indicates that the frontline demonstration has given a good impact over the farming community as they were motivated for adoption of new agricultural technology applied in the FLD plots. The yield attributing factors like number of pods per plant and number of seeds per pod was recorded and the observations were presented in Table 1. It indicates that the maximum of number 28.2 pods plant was recorded in 2018-19 and 26.8 pods recorded in 2017-18 with the average of 27.5 pods were produced in the demonstrated plot which was superior to the local practices (25.6 pods / plant). This indicated that 7.66 percent more pods produced in the improved crop management practices adopted field. Similarly on an average 5.75 seeds produced the demonstrated plot compared to local practices which recorded 4.93 seeds per pod. Though the production of a number of pods/plant may be a genetic character, environmental conditions such as soil, climatic condition, etc. also decides the pod's number. Bhowaland and Bhowmik (2014) reported a variation of the number of pods earlier.

New variety with improved crop management practices registered significantly higher yield than the local practices. The yield of demonstrations and local practices were presented in Table 2. The farmers harvested an average bean yield of 7.68 q ha-1 with the highest bean yield of 8.22 q ha-1 and the lowest grain yield of 6.93 q ha-1 with a yield advantage of 17.99 per cent over the existing farmer practices. An average additional yield of 1.17 q ha-1 was harvested in the demonstrated plot over the farmers practice. This could be achieved due to the adoption of improved production technologies along with new variety of black gram. These results indicated that the frontline demonstrations gave good impact on farming community in Erode district as they were motivated by the improved production technologies applied in the demonstration plots. The findings of the present study are in line with Singh et al., (2018); Jyothiswaroopa et al., (2016) and Rai et al., (2015).

Year	Number of demonstrations	Number of pods/ plant			Number of seeds / pod			
		Improved	Local check	Percent	Improved	Local	Percent	
		practices		mereaseu	practices	CHECK	mcreased	
2016-17	75	27.4	25.8	6.20	5.9	4.9	20.41	
2017-18	75	26.8	25.4	5.51	5.6	4.6	21.74	
2018 -19	50	28.2	26.2	7.63	5.5	5.0	10.00	
2019-2020	50	27.6	24.8	11.29	6.0	5.2	15.38	
Total	250	110	102.2	30.63	23	19.7	42.15	
Average	50	27.5	25.6	7.66	5.75	4.93	10.54	

Table 1. Yield attributing characters of black gram under demonstration

Table 2. Grain yield of black gram as influenced by improved and local practices

Year		Green Yi	eld (qtl/ha)		Additional	Percentage yield		
	Imp	roved practi	ces	Local	Yield (qtl/ha)	increase over		
				practices	over local	local practices		
	Maximum	Minimum	Average	Average	check			
2016-17	8.56	7.38	8.08	6.82	1.26	18.48		
2017-18	7.12	6.28	6.84	5.80	1.04	17.93		
2018 -19	8.50	7.42	7.99	6.90	1.09	15.80		
2019-2020	8.70	6.65	7.79	6.50	1.29	19.85		
Average	8.22	6.93	7.68	6.51	1.17	17.99		

The economic feasibility of the scientific adoption of technologies over farmers practice was calculated depending on the prevailing prices of inputs and output costs (Table 3). The average highest of cultivation was recorded during 2016-17 as Rs. 22,750.00 and the lower of Rs. 20158.00 during 2018–19. It was found that the average cost of cultivation of black gram under improved crop production technology was recorded with an average of Rs. 21767.80 over the farmers practice and it was recorded as Rs. 22,557.50 / ha. Frontline demonstrated fields recorded the higher mean gross return of Rs. 45547.50/ ha and net return Rs. 23134.50/ha with high benefit cost ratio of 2.03. These results are in line with the findings of Sreelakshmi et al., (2012) and Hiremath and Nagaraju (2009). These results are clearly indicated that the adoption of scientific technologies was enhancing the black gram production and economic returns from the demonstrated regions.

The technology gap shows the gap between the potential yields of the crop over demonstrated yield. The technology gap was recorded as 0.83 qtl / ha (Table 5). The extension gap shows the gap between the demonstration yield and local yield and it was 1.17 qtl/ha. The observed extension gap and technology gap may be attributed due to dissimilarities in soil fertility levels, pest and disease incidence, improper usage of manures and fertilizers in this region (Mukherjee, 2003). More and more use of latest production technologies will subsequently change this alarming trend. The new technologies will eventually lead to discontinue the old technologies and to adoption of new technologies by the farmers. Technology index shows the feasibility of the technologies at the farmers' field. The lower the value of the technology index more is the feasibility. Table 4 revealed that the technology index value was 9.75 per cent.

Year	Cost of	Cost of cultivation		oss Return	Net	Return	BCR		
	Improved	Improved Local		Local	Improved	Local	Improved	Local	
	practices	check	practices	check	practices	check	practices	check	
2016-17	22750	23500	50904	42966	28154	19466	2.24	1.83	
2017-18	21750	22100	38304	32480	16554	10380	1.76	1.47	
2018 -19	20158	21156	41862	36168	21704	15012	2.08	1.71	
2019-2020	22413	23474	45547.5	38620.1	23134.5	15146.1	2.03	1.65	
Total	87071	90230	176618	150234	89546.5	60004.1	8.11	6.65	
Average	21767.8	22557.5	44154.4	37558.5	22386.6	15001	2.03	1.66	

Table 3. Cost of cultivation, Gross return, Net return Benefit cost ratio as influenced by improved and local practices

Table 4. Yield, Extension gap, Technology gap and Technology index of the demonstration

Variables	Yield	Extension gap	Technology gap	Technology Index
	(qtl/ha)	(qtl/ha)	(qtl/ha)	(%)
Local check	6.51	-	-	-
Improved practices	7.68	1.17	0.83	9.75

Table 5. Extent of farmer's satisfaction on extension services rendered during demonstrations

Satisfaction level	Percentage
Low	9.6
Medium	18.8
High	71.6

The findings of the present study are in line with the findings of Rai et al., (2015) and Hiremath and Nagaraju (2009). The extent of satisfaction level of the respondent farmers over extension services and performance of demonstrated variety was measured by Client Satisfaction Index (CSI) and the results presented in Table 5. The data depicted in the table shows that the majority of the farmers expressed high (71.6%) to medium (18.8%) level of satisfaction for performance of technology and extension services whereas very few (9.6%) farmers expressed the lower level of satisfactions. The similar type of findings reported by Kumaran and Vijayaragavan (2005) on mustard and gram crops, Meena et al., (2014) on maize crops and Rai et al., (2015) on vegetable pigeon pea crops. This shows the relevance of frontline demonstrations.

Conclusion

Based on the findings, it is concluded that the scientific adoption of integrated crop management technologies along with new black gram variety VBN 6 performed superior than the existing farmers practice in all the demonstrations. Yield potential of the black gram variety is increased 17.99 per cent over farmers practice. It is also suggested that conducting large scale adoption demonstrations and ensuring the critical inputs in time for adoption of technologies play a critical role in enhancing black gram production. The findings also concluded that the adoption of integrated crop management practices along with new variety paved the way for improving the productivity of black gram per unit area.

10. Technology Week Celebrations

Types of Activities	No. of	Number of	Related crop/livestock technology
Casthias	Activities	Participants	Packer Mag Calabrations, Warren Dav
Gostnies	4 INOS.	1525	Forsing man the stand Forman Day,
To store a second second	12 N	1470	Environment Day and Farmers Day
Lectures organised	13 Nos.	1472	Paddy, Rosemary, Turmeric, Banana, Bhendi,
			Groundnut, Composting Techniques, wild boar
			whitefly Management Maiza Doultry Value
			addition in Millets and Daimy
Exhibition	12 Noc	1270	Soil and water concernation. Integrated forming
Exhibition	12 Nos.	1370	Soli and water conservation, integrated farming
			System, FAW management modules, Rugose
			Spiraling whitely Modules, value added
Film show	2 Nor	1014	Products – Honey, Milk & Millets
Film snow	5 INOS.	1214	Bee keeping and value addition in noney, IFS,
			Desi bird farming, Nutrient Foods and Immune
Fair	2 Nac	750	Doosting Herbai Garden
Fair	5 INOS.	152	Bargur cow and bullato milk, millets, tamarind
Form Wight	7 Nac	400	and pulses, value addition and marketing
Farm Visit	/ INOS.	409	Integrated farming system, Soli and water
			toohniguos hy Drong Mathad EAW management
			and EVM conden
Diagnostia Prestical	7 Noc	075	Currentian wild been recallent by
Diagnostic Practical	/ INOS.	875	Dropa tashnalagy, Soil sampling tashnigyag, Soil
			Drone technology, Soll sampling techniques, Soll
			detector honow extraction
Distribution of Literature	6 Nos	1000	Importance of Soil and water concernation Llage
(No.)	o nos.	1000	of high populate Honey Pag regring Importance
(110.)			of Domocularity, Honey Bee rearing, Importance
			production and Mineral mixture in dairy cow
Distribution of Soud (a)	1 5 Ot1	28	Pagi Turmeria fodder groongrom groundnut
Distribution of Seed (q)	1.5 Qu.	38	blackgram and vegetable seeds
Distribution of Planting	500 Nos	124	Coconut seedlings Immune Boosting Herbal
materials (No.)	500 105.	124	Seedlings, Amla and Mango seedlings
Bio Product distribution	750 K gs	420	Bio inoculants (<i>Pseudomonas</i> , <i>T viride</i> , NCOE
(K_{α})	750 Kgs	420	Waste decomposer Isaria fumsorosoga)
(Kg) Bio Fortilizors (a)	2	146	VAM and Vermicompost
Total number of formers	<u> </u>	140	Farmers Vouths Entropropours and Extension
visited the technology	U INUS.	1/33	Officials
work			Officials
WCCK			

11. Training/workshops/seminars etc. attended by KVK staff

Name of the staff	Title	Dates	Duration	Organized by
Mr.S.Saravanakumar	Workshop on mainstreaming	18.2.2021	1 day	TNAU, Coimbatore
	innovations and value added			
	technologies			
Mr.S.Saravanakumar	STRY - Success webinar series-1	25.02.2021	1 day	MANAGE,
Mr.R.D.Srinivasan				Hyderabad
Mr.R.D.Srinivasan	Weeds of National Importance	26.02.2021	1 day	Indian Society of
				Weed Science and
		0.02.0001	2.1	DWS, Jabalpur
Mr.R.D. Srinivasan	Furtherance in Integrated Pest	2.03.2021 -	3 days	ICAR - NCIPM,
Ma S. Sonovonolumon	Warkshop on CPBO	04.03.2021	1 day	ICAP Department
Mr.S.Saravanakumar,	workshop on CBBO	05.05.2021	1 day	ICAR - Department
Prahakaran				of Cooperatives
Mr P Pachiappan	Scope of Medicinal plant	16.03.2021	1 dav	ICAR IIHR
inin in actinappair	cultivation and marketing	10.02.2021	1 duy	Bangalore
Mrs.M.Siva	Promotive Nutrition Sensitive	16.03.2021	5 davs	MANAGE.
	Agriculture among field level	to		Hyderabad
	Women Extension Officers in	20.03.2021		
	Southern India			
Ms. Siva, SMS (Home	Innovative Agricultural Extension	28th to 30th	3 days	MANAGE,
Science)	Approaches by Agri-startups and	April 2021		Hyderabad
	Agripreneurs			
Ms. Siva, SMS (Home	Intellectual Property Rights	30th April	1 days	Agri-Business
Science)		2021		Incubation Center,
				ICAR, NIVEDI,
				Bangalore
Mr.P.Pachiappan	Reginal mass awareness	13.5.2021	1 days	ICAR-IIFSR and
Mr.S.Saravanakumar	Campaign on organic farming			TNAU
Mr.R.D.Srinivasan		20	2.1	
Mr.R.D.Srinivasan	Bee Keeping: Opportunities and	20 -	2 days	National Bee Board
	Challenges	21.05.2021		and AICRP (Honey
				Bee and Pollinator)
				Entomology
				SKUAST Jommu
				Jammu and
				Kashmir
D John Prabakaran	Resilience and cope-up strategies	09.06.2021	1 dav	CIAE Coimbatore
	in pandemic women's perspective	07.00.2021	1 duy	en ill, connoutore
S.Saravanakumar	Participated in the workshop on	11.06.2021	1 day	IFGTB,
	popularization of eucalyptus clone		5	Coimbatore
S.Saravanakumar	IFS for Doubling farmers income	17.06.2021	1 day	TNAU, Coimbatore
R.D.Srinivasan				
M.Siva				
A.Premalatha				

Name of the staff	Title	Dates	Duration	Organized by
R.D.Srinivasan	National Workshop on Good	17-	2 days	MANAGE,
	Practices in DAESI	18.06.2021		Hyderabad
	implementation			
R.D.Srinivasan	National webinar on Sustainable	30.06.2022	1 day	NIPHM,
	management of birds in agri-			Hyderabad
	horticultural ecosystem			
S.Saravanakumar	Awareness of current BIS	29.07.2021	1 day	TNAU, Coimbatore
	activities in agriculture and its			
	allied subject	00.07.0001	1.1	
P.Pachiappan	High dencity planting mango	09.07.2021	l day	TNAU, Coimbatore
S.Saravanakumar	Sustainable intergrated croping	07.07.2021	l day	
	and farming system models with			
	special reference to banana for			NDCD Trichy
	Vagatable grafting	22.7.2021	1 day	INKCB, ITICITY
	remunerative formers friendly	22.7.2021	1 day	
P Pachiannan	technology			TNAU Coimbatore
M Siva	Roles and responsibilities of	31.07.2021	2 days	Society of Krishi
111.0174	Home Scientist in a KVK	&	2 augs	Vigyan Kendras
		01.08.2021		New Delhi
S.Saravanakumar	State level training on organic	04.08.2021	1 dav	DoEE and SOA
	Agriculture			Department,
				TNAU, Coimbatore
S.Saravanakumar	Mechanization in Rize	05.08.2021	1 day	TNAU Coimbatore
R.D.Srinivasan	Economic of Natural Farming	10.08.2021	1 day	MYRADA and
				Welt hunger hilfe
A.Premalatha	High yielding rice varieties with	12.08.2021	1 day	DoEE, TNAU,
	special reference to the season and			Coimbatore
	Agro-climatic zones of Tamilnadu			
S.Saravanakumar,	Mechanised Sett treatment system	19.08.2021	1 day	Directorate of
R.D.Srinivasan, D.John	to improve delivery of Plant			Extension
Prabakaran	Protection chemicals and agro			Education, TNAU,
	inputs in Sugarcane and other			Combatore and
	vegetatively propagated crops			ICAR Sugarcane
				Geimhatara
D S riniyasan	National wabiner on Integrated	27.8-	1 day	Collindatore
K.D.SIIIIIVasaii	Pasts Management: A Paradigm	27 &	1 day	Centre for
	Shift	28.08.2021		Integrated Pests
	Shirt			Management
				(NCIPM). New
				Delhi.
A.Tamilselvan	Documentation and its importance	17 -	2 days	MYRADA,
	· ·	18.09.2021		Bangalore
S.Saravanakumar	Strategies for climate risk	20-	5 days	CRIDA, Hyderabad
A.Premalatha	management and resilient farming	24.09.2021	-	

Name of the staff	Title	Dates	Duration	Organized by
S.Saravanakumar	Alternate cropping and food	29-	3 days	ICAR IIFSR,
	system to conserve resources and	30.09.2021		Modipuram, UP
	address global issues	to 1.10.2021		
G.Thirumalaisamy	Advances in Veterinary Research	1 -	21 days	ICAR- Indian
	for Sustainable Development of	21.09.2021		Veterinary
	Livestock Sector			Research Institute
				(IVRI) Regional
				Station, Palampur,
				H.P. and National
				Agriculture
				Development
				Cooperative Ltd.
				Baramulla
Dr.Thirumalaisamy	Advanced Dairy Animal Nutrition	13-18-12-	6 days	Animal Nutrition
	Management: The Way Forward	2021		Division, ICAR-
				NDRI, Karnal,
				Haryana
Mrs.M.Siva	Gender and Nutri- sensitive	23.12.2021	1 day	ATARI, Hyderabad
	Agriculture			

12. Details of sponsored projects/programmes implemented by KVK

S. No	Title of the programme / project	Sponsoring agency	Objectives	Duration	Amount (Rs)
1	Organic Rosemary cultivation and value addition for small and marginal farmers through farmers collectives	NABARD Regional Officer, Chennai	To promote Rosemary aromatic crop among small and marginal farmers in the hilly area	1 Year (11.02.2021) 10.02.22)	15,00,000
2	NABARD - Agriculture Produces Preservation Lifecycle Enhancement Systems (APPLE) Project	NABARD Regional Officer, Chennai	To demonstrate of UV-C Technology for enhancement of Shelf- Life of Vegetables & Fruits through FPO	6 Months (January 2021 to June 2021)	23,06,315
3	Lantana Camara handicraft Training Programme	NABARD Regional Officer, Chennai	To provide skill training on craft making from lantana camara for tribal	60 Days (September 2021 & October 2021)	4,41,300
4	LEDP on "Value Addition in Indigenous Bargur Cow Milk and Cow by-products"	NABARD Regional Officer, Chennai	To produce various value-added milk products and cow based by-products based on the market demand	3 months (09.11.2021 - 08.02.2022)	7,15,500
5	Formation and Promotion of 1 Farmer Producer Organisation (FPO) for Animal Husbandry Activities und PODF-ID	NABARD Regional Officer, Chennai	To increase the economic importance of traditional native breeds through value chain initiatives and appropriate market linkages through FPO	3 Years (31.03.2021 - 30.03.2024)	8,90,000
6	NABARD – Integrated Tribal Development Project (ITDP) in Bargur Hills, Erode District	NABARD – Integrated Tribal Development Project (ITDP) in Bargur Hills, Erode District	To promote sustainable livelihood activities in tribal families through farm activities, soil and water conservation, IFS, and animal husbandry enterprises	5 Years (06.12.2021 to 05.12.2026	45,04,625
7	DEASI Training Programme for Agriculture Input dealers	MANAGE, Hyderabad	To make input dealers an effective source of farm information at the village level (one stop shop) for the farmers	1 Year (March 2021 to Feb 2022)	7,40,000
8	Tree Growers Mela 2021	IFGTB Coimbatore	To create awareness on cultivation of Cadamba tree among the farmers in Erode district	1 Day (20.09.2021)	1,00,000
9	Skill Training Programme for Rural Youths (STRY)	State Agriculture Department, Erode District	 To provide skills on value addition in millet To provide skills on concentrate feed 	1 Week (01 to 06.02.2021) 1 Week (19 – 24.09.2021)	42,000

			preparation techniques		
10	Maize cultivation	Tamil Nadu Rural	To educate the farmers on	3 Days	1,34,904
	framing programme	Project, Chennai.	maize		
		Total		•	1,14,16,644

Project Number: 1

Funding Agency	NABARD
State/Central/Over Seas	Central
Title	Organic Rosemary cultivation and value addition for small and marginal farmers
	through farmers collectives
Objectives	To promote Rosemary crop among small and marginal farmers in the hilly area
Study area	Talavadi
Methodology	Capacity Building and Demonstration
Team Members	SMS (Horticulture & Agricultural Extension)
Budget	Rs.15,00,000.00

Project Number: 2

Funding Agency	NABARD
State/Central/Over Seas	Central
Title	NABARD - Agriculture Produces Preservation Life cycle Enhancement Systems
	(APPLE) Project
Objectives	To demonstrate of UV-C Technology for enhancement of Shelf-Life of Vegetables
	& Fruits through FPO
Study area	Gobi, Kallipatti and Perundurai
Methodology	Demonstration by using UVC Lights to preserve the vegetables shelf life
Team Members	SMS (Agronomy & Horticulture)
Budget	Rs.23,06,315.00

Project Number: 3

Funding Agency	NABARD
State/Central/Over Seas	Central
Title	Skill Training on Lantana Camara handicraft
Objectives	To provide skill training on craft making from lantana camara for tribal
Study area	Hasanur
Methodology	Skill training
Team Members	SMS (Agronomy & Extension)
Budget	Rs.4,41,300.00

Project Number: 4

Funding Agency	NABARD
State/Central/Over Seas	Central
Title	LEDP – Value Addition in Indigenous Bargur Cow Milk and Cow by-products"
Objectives	To produce various value-added milk products and cow based by-products based on
	the market demand
Study area	Bargur
Methodology	Skill training
Team Members	SMS (Animal Science)
Budget	Rs.7,15,500.00

Project Number: 5

Funding Agency	NABARD
State/Central/Over Seas	Central
Title	Formation and Promotion of 1 Farmer Producer Organisation (FPO) for Animal
	Husbandry Activities und PODF-ID
Objectives	To increase the economic importance of traditional native breeds through value
	chain initiatives and appropriate market linkages through FPO
Study area	Bargur hilly region
Methodology	Promotion of FPO
Team Members	SMS (Animal Science & Extension)
Budget	Rs.8,90,000.00
Project Number: 6	
Funding Agency	NABARD
State/Central/Over Seas	Central
Title	NABARD – Integrated Tribal Development Project (ITDP) in Bargur Hills, Erode
	District
Objectives	To promote sustainable livelihood activities in tribal families through farm
	activities, soil and water conservation, IFS, and animal husbandry enterprises
Study area	Bargur hilly areas
Methodology	Skill training and demonstration
Team Members	SMS (Agronomy, Horticulture, Animal Science, Soil Science, Home Science)
Budget	Rs.45,04,625

Project Number: 7

Funding Agency	MANAGE, Hyderabad
State/Central/Overseas	Central
Title	DEASI Training Programme for Agriculture Input dealers
Objectives	To make input dealers an effective source of farm information at the village level
	(one stop shop) for the farmers
Study area	Erode District
Methodology	Training, Demonstration, Exposure
Team Members	SMS (Plant Protection & Agronomy)
Budget	Rs.7,40,000

Project Number: 8

Funding Agency	Indian Forest Genetic Tree Breeding, Coimbatore
State/Central/Overseas	Central
Title	Tree growers mela
Objectives	To create awareness on cultivation of Cadamba tree among the farmers in Erode
	district
Study area	Gobichettipalayam
Methodology	Awareness Programme
Team Members	SMS (Horticulture)
Budget	Rs.1,00,000

Project Number: 9

Funding Agency	State Agriculture Department, Erode
State/Central/Overseas	State
Title	Skill Training Programme for Rural Youths (STRY)
Objectives	To provide skills on value addition in millet and Concentrate Feed preparation
	techniques.
Study area	Gobichettipalayam & Kallipatti
Methodology	Skill training and method demonstration
Team Members	SMS (Home Science) & SMS (Animal Science)
Budget	Rs.84,000

Project Number: 10

Funding Agency	Tamil Nadu Rural Transformation Project, Chennai.
State/Central/Overseas	State
Title	Scientific Maize cultivation
Objectives	To educate the farmers on scientific cultivation of maize
Study area	Gobichettipalayam
Methodology	Training
Team Members	SMS (Agronomy)
Budget	Rs.1,34,904

13. Success stories

<u>1. Multi-Tier Cropping System for enhancing profitability in Cotton</u>

Introduction:

Mono cropping is exception, while mixture (of species) is the rule of nature. In intercrop system and multi-tier systems, the possibility of more efficient use of resources like sunlight, nutrients and water is leading to increased biological diversity and higher production stability. The introduction of noncompetitive, short duration, multi intercrops into sole cotton, salvaged the risk perturbed by mono cropping. In addition, the root systems of the component crops are also located at distinct zones to explore the soil for moisture and nutrients. Intercrops were observed to serve as an insurance against the menace of pest and disease, vagaries of weather, market fluctuation and help to increase the net profit to growers.

Since cotton is a crop of relatively longer duration, its slow initial growth offers a vast scope for cultivation of suitable intercrops including short duration pulses and vegetables. An ideal cotton based multi-tier vegetable intercropping should aim to produce higher economic return and yields per unit area, offer greater stability in production, meet the domestic needs of the farmer. Based on the diverse features of the crops, the crops can be selected for increasing the profitability and better utilization of natural and applied resources in the cotton based cropping system.

Relative Advantages Multi-Tier Systems

- Increasing the production potentiality
- Enhanced the effective utilization of natural and applied resources
- Increased the input use efficiency
- Reducing the crop weed competition ratio
- Income flow will be ensured through periodical intervals.
- Soil fertility will be sustained
- Created additional employment opportunity to the family laborers

Suitable Crops for Multi-Tier cropping system in Cotton

Based on the duration, rooting behaviors, nutrient absorption level and different group of families crop can be selected for intercropping as well as for multi tier cropping system. Some of the suitable crops for intercropping and multitier cropping are listed below

Pulses: Crops like, black gram, green gram and cowpea can be selected for intercropping in cotton. This will help to reduce the weed growth, additional income and increase the soil fertility through root nodulations.

Vegetables: Profitable vegetable crops like, beetroot, radish, cluster bean, beans, coriander, greens and dolichos can be selected for intercrop as well as for multi-tier cropping system in cotton. This will ensure the regular income from the field at periodical interval apart from reducing the weed growth.

Economic feasibility of multi-tier cropping system in cotton: A Case Study

Cultivation of cotton crop along with different vegetable crops in multi-tier system can be profitable and sustainable model for the farmers in western zone of Tamilnadu. Mr. K. Ramachandran a progressive farmer from Ramachipalayam village of Erode District, successfully adopting multi-tier cropping system in cotton in his 2 acre land. According to his experience, inter cropping with high value vegetable crops is the viable option for reducing the weed growth and increasing the productivity per unit area. He is cultivating cotton crop during the rabi season with 120 cm row spacing. In order to utilize the interspaces effectively he is adopting multi-tier cropping system with crops like, beetroot, radish and coriander crop. Foliar application of vegetable boosters and cotton plus micronutrients was adopted according to the Tamilnadu Agricultural University recommendations. Periodical harvest of intercrops coriander 30 DAS (Days after Sowing), radish (50 DAS), and beetroot (90 DAS),

leads to less competition within the component crops which ultimately resulted in higher cotton yield and also the inter crop yield.

Cropping system	Yield of cotton (q/ha)	Yield of multi tier crops (q/ha)	Gross cost	Gross Return	Net Return	BCR
Cotton + Radish + Coriander	Cotton - 18.69	Radish - 47.75 Coriander - 32	93,920.00	2,06,767.00	109917.00	2.13
Cotton + beetroot + coriander	Cotton - 18.87	Beetroot - 46.38 Coriander - 30.20	96,850.00	1,92,548.00	98,628.00	2.05
Cotton sole crop	Cotton - 18.78	-	77,150.00	1,09,264.00	32,114.00	1.42

Table 1: Yield and economics of multi-tier cropping system in cotton

He harvested 18.78 quintal seed cotton yield in the sole crop whereas in radish, coriander system he got an average yield of 18.69 quintal / ha with 47.75 quintal radish and 32 quintals of coriander yield from one hectare area. This provides the highest net return of Rs. 1, 09, 917 / ha with the benefit cost ratio of 2.13 (Table 1). Similarly he got a net return of Rs. 98,628/ha in the cotton, beetroot and coriander system with the benefit cost ratio of 2.05. Among the multitier system tested in cotton, intercropped with radish and beetroot is found to be more diversified and sustainable one.

Cotton with Radish

Diagnostic Field visit by KVK scientists

Field view with Farmer

2. Experiences of Drone usage in Farming Activities

Introduction:

The technological improvements in agriculture have brought about revolutionary change in agricultural production system. However, it is imperative to enhance input use efficiency for enhancing net profit from farming and mitigating the adverse effect on ecosystem. The interweaving of information and electronic technology for agricultural production system to determine, analyses and manage the critical temporal and spatial factors of farm for maximizing profitability, sustainability and environmental protection is need of hour.

In the present era of agriculture system, amalgamation of sensors, satellites, digital technology, and robotics is indeed need for paving the way for precision, profitable and environmentally safe farming. Harnessing the capability of robotics for coping with business competition, environmental challenges such as reducing the ecological footprint of agriculture, and increasing food production is an opportunity and robotics may be boon for achieving the target. Drones or unmanned airborne vehicles (UAV) play a critical role in the recent farming activities such as application of liquid fertilizers, pesticides in a precise manner with the specific aerial reconnaissance.

KVK Intervention:

ICAR, KVK – MYRADA in association with Rotary club, Gobichettipalayam and Mivi Pro products, Gobichettipalayam demonstrated the usage and application of drones in agriculture. The first demonstration in initiated in 2020 and demonstrating the same in the subsequent years over the area of 1600 acre area in three seasons.

Wild boars and rabbit are the major crop losing factors in the paddy and other crops. The farmer cum entrepreneur Mr. G.V.Sudharsan from Gobichettipalayam of Erode district developed an innovative product called "Herboliv⁺" to protect the crop from wild animals and vertebrates. Kendra demonstrated this innovative product with the support of drone to know about the efficacy of the product as well as drone.

Year	Total area covered (acre)	Major crops covered
2020 – Samba season	863	Paddy and fruit orchards
2021 – Kharif season	497	Paddy and fruit orchards
2020 – Rabi season	240	Paddy and fruit orchards

Outcome & Impact:

The detailed study was conducted during this period to assess the suitability and effectiveness of drone application in agriculture with the parameters like input consumption, labour dependency, time to cover an acre area, cost involvement, accuracy of application and health aspects of spray man.

Parameters	Manual spraying	Drone spraying		
Input consumption	12 litre / acre	4.2 litre / acre 60 percent input consumption is reduced		
Coverage time	1 hour	10 minutes		
Cost for application / acre	Rs. 450.00	Rs. 375.00		
Labour dependency	Shortage of skilled labour 2 labours required	Drone operator and the farm owner is enough to cover the area. The cost of operator is covered in the application cost itself		
Accuracy of application	Cannot be assured	100 % spray assured with the aerial reconnaissance		
Health aspects	 The farmers move on to the field and requires more energy to cover the area. Skin and gut infections observed over the period of time 	No harmful and 100 % free from scorching effects		

Cassava variety (Yethapur -2) – a boon to cassava growers 3.

Introduction:

Cassava (Manihot esculenta), also known as monihot and belongs Euphorbiaceae family. Cassava is a major horticulture important commercial crops cultivated over 20000 ha in Erode district. This is the major crop in the block of Anthiyur, Talavadi, Gobichettipalayam, Sathyamanglam and Modakurichi of Erode, 58% of tapioca produced is used as human food, 28 % as animal feed, 4% in starch-based industries and only 10 per cent is spoiled. In general, the yield of tapioca is getting reduced year by year, pest and diseases like spiraling white fly, cassava mosaic virus, tuber rot are affecting the crop badly, good quality seed material is not available, the existing varieties

yield potential have come down and new varieties not spread among most of the farmers, fluctuating cost of tubers. Due to the above reason, farmers are finding alternate variety for ensuring their farm income. Keeping this in view, KVK taken up trials on identification of YTP -2 Cassava varieties for replacing the old varieties in Erode.

KVK Interventions

- KVK conducted on farm trial during 2019-20 to identify the suitable variety for the prevailing agro climatic condition of Erode district.
- YTP-2 variety released from Tapioca and Castor Research Station, TNAU, Yethapur found more suitable to this region, which matures in 270-300 days, and the realized yield 46.2t/ha. starch content is 29.62%, plants are erect, medium growing and top branching type, suitable to irrigation conditions and with partial irrigation under rainfed conditions and tolerant to drought and salt, when compared to the ruling varieties (Mulluvadi, YTP-1).
- The selected progressive farmers trained on improved crop management practices on cassava cultivation and supported with seed setts. From sowing to harvest, KVK scientists made periodical visit to provide technical advisory services for getting optimum yield.
- IIHR arka vegetable special were provided to the trial farmers to increase the tuber yield
- Assistant professor from TCRS, Yethapur visited the field to know about its surveillance during the cropping period, Based on its performance, KVK demonstrated the same variety in the subsequent year in different blocks of Erode district with the support of line departments.

Year of interventions	KVK interventions	Farmers benefited
2019	FLD, Training,	10
	Demonstration,	
2020	Exposure, Seed	50
	multiplication	
2021	1	150

Outcome and Impact

- KVK identified YTP-2 suitable for the Erode district climatic conditions
- 48.91% yield increase was recorded than the existing varieties
- An additional income of Rs. 58962 / Ha was realized in YTP-2 variety
- Currently 25 ha areas covered by this variety in Erode district.
- KVKs supplied seed materials nearby districts KVKs like Krishnagiri, Thiruipur Karur to conduct demonstrations and Department of Horticulture, Modakurishi supplied from our FLD farmers for wider disseminations.

6	14		201
Sec.		201	
24	1		

produced 24 ton Tubers /acre/year by adopting this YTP-2 variety and earned Rs. 71962/year(Tuber and stems) He supplied 6000 of stems to KVK, Department of Horticulture and other needy farmers in the district. The starch content was recorded 31.00% which was highly preferred in the market for sago industries

Mr. Tamilselvan from Nagadevampalayam village Gobi block has

4. Composting of Farm wastes by using NCOF Waste decomposer

Introduction

Organic farming is gaining momentum in the recent past but at the same time availability of organic inputs for farming activities are inadequate, due to the reduction in animal population among the farming communities. Enhancing and enriching the available farm wastes is the need of the hour. Generally farmers are adopting heap / pit method of manure composting process which requires six month time for compost processing. In order to overcome this problem, KVK conducted trial on the use of NCOF waste decomposer for conversion of agricultural wastes which enhances composting process. "Waste decomposer- A way of doubling farmer's income" developed by National Research Centre of Organic Farming (NCOF), Ghaziabad. It comprises several beneficial microorganisms and is able to convert all types of crop and animal residues and kitchen waste into valuable manure form within 30-50 days depending upon the raw material or waste is used. It can also be used in various ways such as quick composting of bio-wastes, drip irrigation, foliar spray against crop pest and disease management, seed treatment and in-situ composting of crop residues. Single bottle (30 ml) decomposes bio-waste of more than 10,000 metric tons.

KVK Intervention

- KVK conducted trials, training and method demonstration about mass multiplication of waste decomposer and its usages in conversion of waste to wealth to benefit 2345 farmers in the district.
- NCOF Waste decomposer enhances composting process in 39 days which saves 135 days against conventional method of composting. The decomposer culture can be mass multiplied by farmers in their respective farm itself.
- KVK trained Krishi mitra and CMRC to establish NCOF waste decomposer mass multiplication unit at field level.
- As part of Swachh Bharat programme, KVK created awareness campaign and method demonstration of waste decomposer by involving 9456 farmers, farm women, villagers, municipality officials and other people.
- KVK developed IEC material for wider adoption of this technology
- As part of extension activity, Kendra used print and electronic media to popularize this intervention.

Outcome and Impact

- KVK established mother culture of waste decomposer production unit and supplied 67500 litres to 32128 farmers in the district.
- KVK supported village level technocrat to establish waste decomposer unit. So far 5000 farmers and other stakeholders has established waste decomposer multiplication unit at their farm level
- ARYA Bio inoculants production rural youths involved for wider adoption of the technology.

5. Success of Bee Keeping Enterprise - Collective Approach

Introduction

Bee keeping is one of the oldest traditions in India for collecting honey. Honey bees play a vital role in pollination and sustainable eco system management. Intensive cultivation, heavy usage of chemical fertilizers and pesticides leads to drastic reduction in bee colonies. Conserving bees are the important in the recent scenarios and government give more focus on honey bee rearing activities. To promote honey bee farming as a cluster approach, KVK took intensive effort on organizing systematic training and extension programmes at district level

KVK Interventions

- KVK established model bee keeping unit act as a resource and knowledge centre.
- KVK organized 17 skill training programmes to the 590 volunteer farmers and entrepreneurs on bee keeping and supported farmers to establish cluster level honey production unit with the support of CSR project.
- Farmers established cluster level honey production units in 8 blocks of Erode district.
- KVK developed user guide on "Honey bee Rearing" for the benefit of farmers and extension functionaries.

Outcome and Impact

- 8 honey bee cluster formed by covering 590 farmers in the district.
- 42 branded honey based products were developed and marketed through farmers outlets, FPOs, exhibitions and other institutions
- 300 kg/month of honey produced and marketed by the KVK promoted clusters.
- KVK promoted successful entrepreneurs honoured at national level by various organizations.
- Extended technical assistance for establishment of honey bee farm to the farmers in nearby districts like Salem, Thiruppur, Krishnagiri, Thiruvannamalai and Coimbatore district

Bee keeping enterprise

Mr. Kathirvel is a successful honey bee entrepreneur for the past 10 years residing in Kannakkampalayam village. He is rearing Indian and stingless bees in his farm. He is a master trainer in honey bee rearing and value addition in honey based products. Rearing more than 200 bee boxes in his farm and producing 300 kg of honey per month. He is earning Rs. 30,000 per month from honey enterprise.

6. Vertical Farming - Ensures Nutritional Security of Households

Introduction

The population explosion resulted in migration of people from rural areas to urban areas for income generation. Due to migration of peoples most of the agriculture lands are converted into residential areas, resulted with decreased production of fruits and vegetables. Dietitians recommend 85 grams of fruits/day, 300 grams of vegetables/day, whereas the present day consumption of fruit is only 30 grams/day and vegetables is 120 grams/day. This can be solved by growing vegetables at our home so that we can choose and ensure the opportunities to get fresh vegetables. A vertical farming is an innovative of cultivating vegetables where the crops grows in a layer system (Vertically) using grow bags with support system within limited space and dish system

wherein creepers can be grown in limited space, nutrients and water saving concept

KVK Intervention

- KVK conducted 42 training on home gardening with vertical farming system and covered 625 members.
- KVK developed vertical farming system at instructional farm with different models
- IEC material developed for the benefit of all the end users
- KVK demonstrated vertical farming in two types i.e. *Dishpandhal* and *Rack system*
- KVK established AESC (AgriEntrepreneur Service Centre) to extends support for establishing vertical farming units

Outcome and Impact

- By adopting this technology, 35-40% water could be saved. Hence, growing vegetables from this method could increase the water use efficiency.
- KVK promoted Thenkoodu CMRC (Community Managed Resource Centre) established different models of vertical farming system for vegetable production for the benefit of SHG women and farmers at village levels.
- The technology supported for 35 families and 1 residential school to get fresh vegetables in their noon meal programme.
- More than 5685 farmers, farmwomen, school and college students of Erode and other parts of the state visited the technology.
- KVK extended technical support for establishing vertical system in Krishinagiri, Coimbatore and nearby district farmers
- One women technocrat trained on Grow Bags and accessories manufacturing, also provides traditional seeds, seedlings, and growth promoter. The *YouTube* channel created called *"Mayura Creation"* for providing end to end solution in home gardening, more than 2000 videos shared in this YouTube channel on vegetable production technology
- Innovative one cent model Dish pandhal system designed and established at KVK and farmer's field like Two dish type, Four dish type and hexogen models in one cent area.

Vertical farming				
Year	No. of training	Number of participants	No. of model units developed	
2017	6	84	2	
2018	8	112	12	
2019	12	164	18	
2020	16	265	24	
2021	18	321	27	

Yield from Rack system			
Crop	Yield/ *Cent/ Season (kg)		
Tomato	72		
Chillies	45		
Bhendi	72		
Cluster beans	54		
Lablab	36		
Brinjal	54		
*1 cent= 108 bags			
Yield from	Dish Pandhal(kg/cent)		
Snake gourd	37		
Bottle gourd	31		
Ribbed gourd	26		
Bitter gourd	32		

7. <u>Successful Women Agripreneur in IFS and Value Addition</u>

Mrs. Kavitha resides in Anuparapalayam village of Sathy block. She is 39 years old, completed her MBA degree and involved in farming in their 3 acres of wet land for 12 years. She is cultivating Sugarcane, Banana, Coconut, Mixed Fodder with the support of her family members. Since she from agriculture background, she has passion in agri related activities like Dairy farming, Dog breeding, Desibird rearing Vermi compost production, Bee rearing and Black soldier production. She is attending regular training and exposures at KVK and utilizes its services for her farm development. Her farm stands as a model resource centre for Integrated Farming System in Sathy block.

KVK intervention:

- Capacity building programme on Integrated Farming System (IFS)
- Attended training on Post harvest and Value addition in farm produces under STRY programme programme
- Attended Two months course on Agri-preneurship development at TBI, TNAU, Coimbatore
- Attended one month course on Organic farming and vermicomposting under ASCI at KVK Erode
- Completed one year diploma course (DAESI) in agriculture with KVK Erode
- Invited as Resource person for KVK, Colleges and Departments of Agriculture
- KVK supported her to enroll as members in n Technology Incubation at TBI, TNAU, Coimbatore

Components practiced with IFS concept:

- Major crops Sugarcane, Banana
- Desi Bird parental stock unit (100 Nos)
- Milch animal (4 No)
- Sheep rearing (8 Nos)
- Dog Breeding (2 breeds)
- Black soldier fly unit (3 unit)
- Vermicompost production (1 ton capacity)
- Nursery (Arecanut 500 No)
- Bee Boxes-8 Nos.
- Food processing Unit (Value addition in coconut, millets, Turmeric powder, Masala powders and Nutrimix)

Outcome and Impact:

- Established Integrated Farming System unit with 10 different components and act as model demo unit for conducting training programmes to farmers and other extension functionaries
- Established parental stock unit for desi birds with 6 breeds for purity maintenance
- Reduction in cost of cultivation in crops by adopting various on farm input production techniques at 30%
- Developed innovative formula for making masala powders
- She markets her products in the brand name of AARA through KVK outlet, FPOs and Online Platform
- She is earning Rs. 6,78,000 / year through IFS and value added products
- Adopting eco-friendly management practices for controlling pests and diseases
- Developed Innovative Bio Seed Coating Method and register the same in Agri Business Incubation Centre, TNAU for further validation
- Act as a Resource Person for desi bird production and value addition in agri and horticultural crops

- Farmers can avail the technological resources (earth worm, vermicompost, areca seedlings, black soldier fly worm, desi birds) for further establishment in their farm
- Innovative methods adopted by her was documented by KVK and mass media and telecasted for wider dissemination of the technologies
- On an average, 160 mandays employment opportunity provided for 2 Joint Liability Groups for product development per year

Horizontal spread:

- More than 500 farmers and entrepreneurs visited her farm to obtain practical knowledge on IFS and value addition in the past 3 years
- Displayed her products in KVK and FPOs, TNAU TBI outlet to reach the maximum customers
- 32 rural women entrepreneurs developed and 28 IFS farmer adopted her farm technologies after visiting farm.
- Her experiences documented by Doordharsahan, Krishi Jagran and telecasted widely and she motivates young farmwomen for startup in agri-entrepreneurship.

62

8. <u>A Success of producers Group in Conservation and Livelihood promotion of Hilly farmers</u>

Introduction

The livestock sector has emerged as a vital sector for ensuring a more inclusive and sustainable agriculture system. India is blessed with a huge biodiversity of 43 indigenous cattle breeds and 16 Buffalo breeds which has survived over last hundreds of years in respect of their suitability for specific purposes in concerned local environment. In Tamilnadu, 05 indigenous cattle breeds (Kangeyam, Bargur, Umblacherry, Alampadiand Pulikulam) are unique; in those Bargur cattle is a breed of dairy cattle, native to the Bargur region of Bargur forest hills in AnthiyurTaluk of Erode District in Western Tamil Nadu in India. In recent times, several of the indigenous breed population has been declined mainly due to their becoming uneconomical. Draught breeds utility has decreased because of mechanization in agriculture. In addition, existence of superior indigenous breeds can provide valuable research inputs for developing superior breeds. It is therefore important that Indigenous breeds of cattle are conserved, developed and proliferated.

KVK Intervention

Keeping this in view, ICAR KVK – MYRADA, Erode district took the initiative of bringing the importance of maintaining the Bargur breed, with the support of Erode District Collector to look for alternative way to conserve this native breeds. Since, there were no milk marketing facilities in the remote hill areas, it was decided to form milk producers group called "**Surabi milk and Agri products Producers Group**" and initially enrolled with 232 farmers and initiated the milk marketing by involving local rural youths.

The community managed resource centre (Marutham and Kurinji CMRC) promoted by KVK have facilitated the milk collection and marketing the products in the neighboring towns like Anthiyur, Gobichettipalayam and Sathyamangalam. KVK Provided capacity building progarmme on Clean milk production, Scientific feeding management – Mixed fodder cultivation and Azolla, EVM practices to manage diseases, Mineral mixture management of dairy animals and Milk value addition.

Number of farmers benefitted	
458 Numbers	
12 Centres (25-30 Litres per day /Centre)	
2 (Anthiyur and Gobi)	
Milk procurement canes, Lactometer, 2- Digital Milk	
analyzing Machine, 320 Litres capacity Milk cane	
coolers- 2 numbers, Vehicle for Milk Transportation,	
Cream Separator, Curd Churning Machine	

Surabi Milk and Agri Products Producers Group- Convergence

S.No	Particulars	No.of.Unit	Value (Rs)	Source/Sponsor
1.	Milk Cane Cooler	02	3, 94, 592.00	District Administration Erode
				1.Sakthi Masala Pvt Ltd, Erode
				2. Mr.Kathiravan Bargur
2.	Insulated Sintex milk can	08	33,984.00	District Administration Erode
	(40 litres capacity)			
3.	SS Milk cane (40 litres	08	45,312.00	District Administration Erode
	capacity)			
4.	Milk Cane Cooler	01	2,36,826.00	1.Sakthi Masala Pvt Ltd, Erode
				2. ICAR KVK, MYRADA
5.	SS Milk cane (40 litres	08	49,000.00	ICAR KVK, MYRADA (SCSP 2019-
	capacity)			2020)
6.	SS Milk cane (40 litres	08	45,312.00	ICAR KVK, MYRADA (Fullerton 2019-
	capacity)			2020)
7.	Digital Milk Analyzer	02 sets	1,02,417.00	ICAR KVK, MYRADA (SCSP 2019-
				2020)
8	Butter Churning machine	01	6000	Surabi Milk & Agri Products Producers
				Group
9	Curd Churning machine	01	3000	Surabi Milk & Agri Products Producers
				Group
10	Gerber's Centrifuge method-	01	7000	SMD Dairy, Erode
	Milk analyzer			
11	Cream Separator Machine	01	38,000	ICAR KVK, MYRADA (AESC)
12	Establishment of Milk cane		30,000	ICAR KVK, MYRADA
	cooler unit room			Kurinji CMRC,Bargur.
13	Milk Collection sub centers	05 sets	15000	Surabi Milk & Agri Products Producers
				Group
14	i. Milk Cans	30	1,00,000	Surabi Milk & Agri Products Producers
				Group
	ii. Digital Milk	01	40,000	Surabi Milk & Agri Products Producers
	Analyzer			Group
	iii. Ice Box	02	5,000	Surabi Milk & Agri Products Producers
				Group
	iv. Deep Freezer	02	70,000	ICAR KVK, MYRADA
	v. Panner Making	02	36000	ICAR KVK, MYRADA
	Machine			
	vi. Two Wheeler	02	45,000	Surabi Milk & Agri Products Producers
				Group
15	Initial Establishment	-	5,00,000	Marutham CMRC Revolving Fund
	activities			
		Total	20,27,443.00	

Outcome and Impact

- During one year period 45,000 litres Bargur Bufflao milk , 12,000 Litres Bargur cow milk procured and marketed by Surabi Milk and Agri Producers group
- > This initiative straight away supported the producers to get additional income of Rs.10/- per liter of milk.
- The Bargur hill farmers are expressing that, Since the market avenue is created for their Bargur cattle and get better price, the farmers have decided not to sell their animals in future, instead they all planned to conserve the animal and to improve their livelihood.
- The value chain activity of KVK helps in increase the income of farmers and more importantly to conserve our Bargur Native breeds.
- > Employment opportunities for Bargur hills rural youth and SHG's
- > Farmers gets better price for their quality milk
- In order to scale up the milk marketing in Erode district, the milk outlet being established in 4 locations of Erode Town in order to market the A2 milk from Bargur cattles

9. Empowerment of Rural Youth in Farm Enterprises

Introduction

Agriculture and its allied activities like Livestock management and poultry farming play vital role in sustaining the income of the farming community. In Erode district, 17 percent of the rural populations are directly involved in agriculture, the remaining are depends on the textile industries and other works. The changes in consumption pattern among the people on novelty food products and confectionaries attract youths to venture into food based micro

enterprises in rural and urban areas. In order to attract such youths in agriculture, KVK provides short and longterm skill based training programme on various agricultural and allied activities. KVK also facilitate such youths by providing handholding support to venture into new enterprises under ARYA (Attracting and Retaining Youths in Agriculture) programme.

KVK interventions

- KVK provided 18 Skill trainings on Desi bird production, on farm production of Bio inoculants, Value addition in Banana fibre and Honey enterprises by covering 363 youths in the district.
- KVK organized 16-exposure visits to SAUs, TANUVAS, KVKs and other successful entrepreneur model unit to update their skills and Knowledge.

Name of the	Performance of the enterprise
Farm	
Enterprise	
Desi bird	48,000 eggs and 7,500 Kgs of meat, 5,000 chicks, 20 tons of feed have
production	been produced by 10 youths
Bio inoculants	7,250 Kgs of Pseudomonas fluorescens, 4,550 Kgs of Trichoderma
production	viride, 5,000 Kgs of VAM, 35,750 litres of NCOF Waste Decomposer
	and 730 litres of Isaria fumosorosoae have been produced by 7 youths
Value addition	Banana Fibre – 1000 Kg
in Banana	Mat – 300 Kg
	Handicrafts – 200 kg
	Sap water by products – 1500 kg have been produced by 10 youths
Honey	4,800 Kgs of honey harvested and43nos. of value added produced were
enterprises	produced have been produced by 4 youths.

• KVK supported for 48 youths to establish decentralized production units in bio inputs production, desi bird parental stock production, apiculture and banana fibre production enterprises.

Outcome & Output

- 4 enterprises promoted under ARYA project and developed 62 branded products.
- The enterprises have provided employment opportunities for 92 youths in the district
- The average income of rural youths involved in ARYA programme ranges from Rs.12,000 to 18,000/month

- Farm enterprises act as a successful model in the district for the budding entrepreneurs
- 9 ARYA successful experiences documented in the print & electronic media i.e Doordarshan, Valarum Velanmai, YouTube and Facebook
- KVK supported the youths to market their products through Agri Entrepreneur Service Centre (AESC), Community Managed Resource Centre (CMRC), FIGs, FPOs and State Department of Agriculture based on the requirements.

14. Details of innovative methodology, innovative technology and transfer of Technology developed and used during the year by the KVK

Challenges	Innovative methodology adopted	Output	Outcome
Drought tolerant	Seed Costing Formulation	Developed innovative seed coating formulation	Increases the germination percentage in dryland crops and yield by 15%
and germination	1 officiation	for all crops	in dryfaild erops and yreid by 1576
Dissemination of	Development of	Developed 200	Provide first-hand information to the
technologies in	technocrats	Technocrats in Gobi, TN	farmers, season based technologies
extension system		Palayam, Sathy, Talavadi,	transferred to the farming community
through input		Anthiyur, Bhavani and	in time.
dealers		Ammapet blocks of Erode	
		district	

15. Details of indigenous technology practiced by the farmers in the KVK operational area, which can be considered for technology development

S.	Crop /	ITK Practiced	Purpose of ITK
No.	Enterprise		
1	Coconut	Pine apple extract with sugar solutions kept in	To manage the red palm
		coconut farm @ 12/ha	weevil
2	Sugarcane	Spraying of egg solution over sugarcane seedlings	Prevent the seedlings from
			rabbit damage
3	Brinjal	Neem and camphor extract (Cow urine, turmeric	To manage the fruit and
		powder, neem oil, champhor, calcium powder)	shoot borer damage
4	Cotton	Vegal karaisal is an extract of plant leaves	To manage the sucking pest in
		(Lantana camara, aloe vera, mint)	cotton
5	Dairy	Extraction of jack leaves, vilvam leaves, neem	Treatment for Foot and
	Animal	leave and park	mouth disease
6	Poultry	Cut piece of small onion mixed with keelanelli	Treatment for ranikhet
		leaves given oral	disease

16. Impact of KVK activities (Not to be restricted for reporting period).

Name of specific	No. of	% of	Change in income (Rs.)		
technology/skill	participants	adoption	Before (Rs./Unit) After (Rs./Uni		
transferred					
Vegetable special	457	82	Rs.40000/ha	Rs.47000/ha	
Banana special	3721	86	Rs.2.25 lakhs/ha	Rs.3.2 lakhs/ha	
Bee keeping	1324	70	Nil	Rs.10000 /year	
Decentralized bio	57	87	Nil	Rs.15400 to	
input product				Rs.17250/month	
Mushroom	122	78	Rs.2000/month	Rs.10,000 to	
cultivation				Rs.12,000/month	

Name of specific	No. of	% of	Change in income (Rs.)		
technology/skill	participants	adoption	Before (Rs./Unit)	After (Rs./Unit)	
transferred					
Processing and value	107	72	Rs.10000 -	Rs.40000-48000/month	
addition of farm			15000/month		
products (Millet,					
Fruits & Vegetables)					
Desi bird rearing	92	95	Rs.2000/month	Rs.15,000 -	
				Rs.20,000/month	
Mixed fodder	180	87	Nil	Rs.1,30,000/year	
Turmeric assaying	650	47	Rs.120000 / year /	Rs.150000 / year / acre	
unit (Curcumin			acre		
analysis)					
Vermi compost	25	16	Nil	Rs.6000 to Rs.8000/month	
Value addition in	165	85	Rs.2000 -	Rs.8000 - Rs.10000/ month	
milk			Rs.3500/month		

17. Impact of five select technologies assessed/demonstrated/popularized by the KVK in the district (in QRT format)

S. No.	Name of specific technology / skill transferred	Source of technology	No. of Farmers	Extent (ha)	Increase in net return Rs / ha	Economic Impact / benefit (Rs) (5x6)	KVK Intervention OFTs/FLDs/ Trainings	Convergence / Partners involved in up scaling of technology	Remarks
1	High Yielding Variety in Greengram (CO-8)	TNAU	260	125	12,000	15,00,000	CFLD – 6 Trainings – 14 Field – 6 Literature Published – 8	Department of Agriculture and FPOs	 Increasing the yield by 17.56 percent KVK promoted Farmers Group involved in seed production and supplied 46 qtl Seeds to State Department of agriculture KVK established 4 decentralized processing units consist of spiral separator, Pulses dehusker, pulveriser
2	Management of Fall Army Worm in Maize Crop	TNAU, Coimbatore	3672	2730	35,250	9,62,32,500	OFTs-3 FLD s- 4 Trainings – 22 Field days- 4 Literature Published – 3 Kisan Mela – 2	Department of Agriculture, TNAU and FPOs	 22.05 yield increased was noticed Pests infestation percentage reduced from 20.25 to 7.63 200 input dealers were trained in the management of Fall Army worm and providing technical assistance to the farmers

S. No.	Name of specific technology / skill transferred	Source of technology	No. of Farmers	Extent (ha)	Increase in net return Rs / ha	Economic Impact / benefit (Rs) (5x6)	KVK Intervention OFTs/FLDs/ Trainings	Convergence / Partners involved in up scaling of technology	Remarks
3	French Beans	IIHR, Bangalore	2175	1680	32,000	5,37,60,000	OFT – 2 FLD – 6 Training – 32 Field Day – 6 Impact Study – 1 Case Study - 4	HRS, Ooty, Department of Horticulture and FPO	 17.50 % yield increased was noticed 30% area increased in hilly regions of Erode District
4	Turmeric	IISR, Calicut	674	1230	28,000	3,44,40,000	OFT - 2 FLD - 5 Training - 18 Seminar - 3 Field Day - 5 Success Stories - 2	Department of Horticulture and FPO	 15.25 % yield increased was noticed 18% area increased in Erode District Established 2 curcumin assaying laboratory Formed Farmers Producer Organization 100 acres have been converted in to organic farming practices
5	Cassava	TNAU, Coimbatore	110	250	52,000	1,30,00,000	OFT - 2 FLD - 4 Training - 12 Field Day - 4 Success Stories - 1	Department of Horticulture	 18.50 % yield increased was noticed in YTP-2 variety 5% area increased in hilly regions of Erode District

Cases of large-scale adoption/impact of specific technologies

Sl.No.	Activities	Achievements
1	Integrated Farm Development	4182 families
2	French Beans (Arka sharath, Arka komal)	1870 hectare
3	Ragi (ML-365)	1245 hectare
4	High yielding variety – Greengram & Blackgram	385 hectare
5	Sugarcane variety – CO-0212	5400 hectare
6	Turmeric (Pragathi variety)	325 hectare
7	Banana special	4150 hectare
8	Vegetable special	2850 hectare
9	VAM	850 hectare
10	Fodder (CO4 & CO5)	3250 farmers
11	Mushroom spawn production	15250 kg
12	Agri-Value chain (Value added Products)	96 branded products
13	Organic liquid manure	1850 hectare
14	Turmeric curcumin analysis	650 farmers
15	Drone Spray	600 acres

18. Details of impact analysis of KVK activities carried out during the reporting period

High yielding Sugarcane Variety CO - 0212

Introduction

Sugarcane being mainly grown as an important commercial crop and it is the main source of sucrose in India. In Erode district, sugarcane occupies 25,000 ha area in every year. Due to the continuous cultivation of old varieties in the same field over 3 years resulted in yield reduction in sugarcane crops. Seasonal aberrations and ground water availability leads to reduction in area under sugarcane cultivation. The farmers not aware of recent varieties released by research stations and state agricultural universities, which are resistant or tolerant to various pests and diseases apart from the higher productivity. Considering the constraints faced by the farmers, ICAR KVK MYRADA conducted on farm trial on the performance assessment of sugarcane variety CO - 0212 in Erode district. The yield performance and higher economic returns of the variety leads for further dissemination in the district.

KVK Intervention:

- KVK conducted On-farm trials with High Yielding variety in Sugarcane (CO-0212) in Elumathur and Vellode region of Erode district
- Training programmes organized on various production technologies in association with ICAR Sugarcane Breeding Institute, Coimbatore and Sakthi Sugars Limited
- Method demonstrations conducted on sett treatment techniques, planting methods and IPM practices
- Organized Exposure programme to ICAR SBI, Coimbatore in order to exploring the production potential of newly released sugarcane varieties
- Established nursery units for disease free quality seedling production in Vellode

Outcome and Impact:

- The new variety CO 0212 recorded the yield of 127.50 t/ha over the existing variety recorded the yield of 108.75 t/ha
- 17.24 percent yield increase observed over the existing variety
- The nursery units supplies 2 lakhs quality sugarcane seedlings per month
- Additional net income of Rs.45,563.00 /ha realized only by replacing the variety
- 53.09% area replaced by new sugarcane variety (CO-0212)
- 6 farmers involved in production of seedling through Protray technology with the guidance of Sakthi Sugars limited and ICAR-KVK, MYRADA.

Horizontal Spread of the Variety

The demonstrations conducted in the farmers' field were well appreciated by the neighboring farmers and sugar mill which could increase the area under Co 0212 in the recent time. The horizontal spreads of the variety in the district are presented in the following graph.

From the yield performance and economic impact of sugarcane variety Co 0212, the sugarcane farmers are convinced for growing the variety in large scale areas that will easily improve the sugarcane productivity in Erode district.

19. Linkages

Functional linkage with different organizations

Name of organization	Nature of linkage				
National Institutes :					
NABARD, Chennai	Promotion of FPOs, Skill Training, Demonstration				
MANAGE, Hyderabad	Capacity building programme to Input Dealers				
NDDB, Erode	Skill training, Demonstration				
NIPHM, Hyderabad	Training and demonstration				
NDFB, Hyderabad	Training and demonstration				
Universities, Research and Educational Institutions:					
TNAU, Coimbatore	Technical support and Students Placement				
TANUVAS, Chennai	Capacity building and Technical support				
ICAR – IISR, Calicut	Demonstration and exposure programme				
ICAR – IIHR, Bangalore	• Technological products, seed material and farm				
	machineries				
ICAR – SBI, Coimbatore	Demonstration & Exposure programme				
ICAR – CICR, Coimbatore	Demonstration & Exposure programme				
ICAR – CIAE, Coimbatore	Demonstration & Exposure programme				
ICAR – IISWC, Ooty	• Exposure programme, Training programme				
ICAR - CPCRI, Kasaragod	Capacity building and Technical support				
ICAR – CIPM, Trichy	Technological products				
ICAR – CPRS, Ooty	• Exposure programme				
NBAIR, Bangalore	Demonstration and Technological products				
State Department:					
Department of Agriculture, Erode & Other	ATMA programme and Capacity building				
Districts					
Department of Horticulture, Erode	Capacity building				
Department of Agri business & Marketing,	Skill training programme				
Erode					
Department of Animal Husbandry, Erode	Camps & Campaign				
SAMETI, Tamil Nadu	DAESI Programme				
TNRTP, Chennai	Capacity building programme				
Colleges and Schools					
Kumaraguru Agriculture College, Appakkudal	Students Placement and RAWE Programme				
JKKM Agriculture College, TN Palayam	• Students Placement and RAWE Programme				
PKR Arts College for Women	Training, Demonstration & Awareness Programme				
Gobi Arts & Science College	Capacity building programme and exposure				
Bannariamman Rural Foundation	Capacity building programme and exposure				
School Students – within the district	Exposure, Training and Demonstrations				
Print & Electronic Medias:					
All India Radio, Doordarshan and Channels,	India Radio, Doordarshan and Channels, Announcements, Articles, Screening of KVK's Technical				
News Papers, Monthly Magazines, Journals,	Programmes, documentation and video coverage				
etc.					

20.	List of special programmes undertaken by the KVK and operational now, which have been finance	d
	by State Govt./Other Agencies	

Name of the scheme	me of the scheme Date/ Month of initiation		Amount (Rs.)
ATMA Scheme - 6 days		State Agriculture	84,000/-
Skill Training Programme for Rural	(19 - 24.09.2021)	Department, Erode	
Youths (STRY)	6 days District		
	(01 - 06.02.2021)		
Tree Growers Mela 2021	1 Day	Institute of Forest	1,00,000/-
	(20.09.2021)	Genetics and Tree	
		Breeding (IFGB),	
		Coimbatore	
Training of SPARKs' for	3 Days	Tamil Nadu Rural	1,34,904/-
Community Farm Schools to Erode	10 - 12.11.2021	12.11.2021 Transformation Project,	
District		Chennai	
	3,18,904/-		

21. AWARDS and RECOGNITIONS

KVK, KVK Staff, KVK Contact Farmers etc. at district, state, national and international level supported by copies of certificates and photographs

(Please do not include Awards and certificates issued by ATARI)

Sl.No.	Name of the Award	Category	Name of the Awardee				
KVK Staffs							
1	Best Senior Scientist Award	National	Dr.P.Alagesan				
2	Promotion of AESC	District	Dr.P.Alagesan				
3	Best KVK Scientist Award	National	Mr.P.Pachiappan				
4	Best Women Scientist Award	National	Mrs.M.Siva				
5	Best KVK Scientist Award	National	Mrs.Saravanakumar				
6	Best KVK Scientist Award	National	Mr.R.D.Srinivasan				
7	Best KVK Scientist Award	National	Mr.D.John Prabakaran				
8	Young Scientist Award	National	Dr.S.Vinothraj				
KVK Farmer & Entrepreneurs							
9	Best Model Integrated Farming System	District	Mr.Nataraj				
10	Best Farm Innovator	District	Mr.Shanmugasaundaram				
11	Best Farm Innovator	District	Mr.Sudharsan				
12	Best Young Entrepreneur	District	Mr.Vivek				
13	Best Women Entrepreneur	District	Mrs.E.Kavitha				
14	Best Entrepreneur	District	Mr.S.Prasad				
15	Best Producer Group Promoter	District	Mrs.K.Vijaya				
16	Best Millet Crop Promoter	District	Mr.Basavaraj				
17	Agri Business Ideathon Challenge Award	State	Mr.VUtharakannan				
18	Agri Business Ideathon Challenge Award	State	Mr.A.K.Soundararajan				
19	Agri Business Ideathon Challenge Award	State	Mrs.E.Kavitha				
FPO (Farmers Producer Organisation)							
20	Appreciation Award by Erode FPCL, Sivagiri	State	Kazhani FPCL, Kallipatti				
21	Krishi Alert Award 2021 – Food Processing	National	Kazhani FPCL, Kallipatti				

